爾凡駕車從甲地到乙地,設(shè)他出發(fā)第xmin時的速度為ykm/h,圖中的折線表示他在整個駕車過程中y與x之間的函數(shù)關(guān)系.
(1)當20≤x≤30時,汽車的平均速度為   km/h,該段時間行駛的路程為      km;
(2)當30≤x≤35時,求y與x之間的函數(shù)關(guān)系式,并求出爾凡出發(fā)第32min時的速度;
(3)如果汽車每行駛100km耗油8L,那么爾凡駕車從甲地到乙地共耗油多少升?

試題分析:(1)根據(jù)提示可求出20≤x≤30時,汽車的平均速度和該段時間行駛的路程;
(2)根據(jù)圖象知D點和E點坐標,設(shè)出解析式,代入即可解出解析式,當x=32時,相應(yīng)的函數(shù)值即可求出;
(3)用各時間段的平均速度乘以時間,求出行駛的總路程,再乘以每千米消耗的油量即可.
試題解析:(1)42;7;
(2)設(shè)y=kx+b(k≠0),
∵函數(shù)圖象經(jīng)過點(30,24),(35,48),
 
解得 
所以,y與x的關(guān)系式為,
當x=32時,=33.6(km/h);
(3)行駛的總路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,
=+3+10+7+3+8+2,
=33.5(km)
∵汽車每行駛100km耗油8L.
∴小麗駕車從甲地到乙地共耗油:33.5×=2.68(升).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次運輸任務(wù)中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設(shè)汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)寫出返程中y與x之間的函數(shù)表達式;并指出其中自變量的取值范圍.
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線的交點為,則方程組的解為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

漳州三寶之一“水仙花”暢銷全球,某花農(nóng)要將規(guī)格相同的800件水仙花運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的3倍,各地的運費如下表所示:
 
A地
B地
C地
運費(元/件)
20
10
15
(1)設(shè)運往A地的水仙花x(件),總運費為y(元),試寫出y與x的函數(shù)關(guān)系式;
(2)若總運費不超過12000元,最多可運往A地的水仙花多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時間(小時)之間的函數(shù)關(guān)系對應(yīng)的圖象(線段表示甲出發(fā)不足2小時因故停車檢修).請根據(jù)圖象所提供的信息,解決如下問題:

(1)求乙車所行路程與時間的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

2014年3月31日凌晨,重慶東水門長江大橋正式通車,重慶主城再添一座跨江大橋,為重慶的經(jīng)濟發(fā)展提供了幫助.王大爺為了感受重慶交通的發(fā)展,搭乘公交車從家去參觀東水門長江大橋,預(yù)計1個小時能到達.行駛了半個小時,剛好行駛了一半路程,遇到堵車道路被“堵死”,堵了幾分鐘突然發(fā)現(xiàn)旁邊剛好有一個輕軌站,于是王大爺轉(zhuǎn)乘輕軌去觀看大橋(輕軌速度大于公交車速度),結(jié)果按預(yù)計時間到達.下面能反映王大爺距大橋的距離(千米)與時間(小時)的函數(shù)關(guān)系的大致圖象是(   )

A.                 B.                C.                  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在平行四邊形ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.
(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點Q作QR∥AB,交AD于點R,連結(jié)BR,如圖②.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息,已知甲先出發(fā)2秒,在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關(guān)系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是 (  )
A.①②③ B.僅有①②
C.僅有①③D.僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B-A-D-A運動,沿B-A運動時的速度為每秒13個單位長度,沿A-D-A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.

(1)當點P沿A-D-A運動時,求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點P沿B-A-D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點Q作QR∥AB,交AD于點R,連結(jié)BR,如圖②.在點P沿B-A-D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.

查看答案和解析>>

同步練習(xí)冊答案