如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.                                                                                               

(1)求n的值;                                                                                

(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說(shuō)明理由.                

                                                           


【考點(diǎn)】旋轉(zhuǎn)的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線(xiàn);菱形的判定.               

【專(zhuān)題】幾何圖形問(wèn)題.                                                                         

【分析】(1)利用旋轉(zhuǎn)的性質(zhì)得出AC=CD,進(jìn)而得出△ADC是等邊三角形,即可得出∠ACD的度數(shù);               

(2)利用直角三角形的性質(zhì)得出FC=DF,進(jìn)而得出AD=AC=FC=DF,即可得出答案.              

【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)n度后,得到△DEC,                                                                           

∴AC=DC,∠A=60°,                                                                       

∴△ADC是等邊三角形,                                                                        

∴∠ACD=60°,                                                                                 

∴n的值是60;                                                                                 

                                                                                                          

(2)四邊形ACFD是菱形;                                                                   

理由:∵∠DCE=∠ACB=90°,F(xiàn)是DE的中點(diǎn),                                             

∴FC=DF=FE,                                                                                  

∵∠CDF=∠A=60°,                                                                          

∴△DFC是等邊三角形,                                                                         

∴DF=DC=FC,                                                                                 

∵△ADC是等邊三角形,                                                                        

∴AD=AC=DC,                                                                                 

∴AD=AC=FC=DF,                                                                           

∴四邊形ACFD是菱形.                                                                         

【點(diǎn)評(píng)】此題主要考查了菱形的判定以及旋轉(zhuǎn)的性質(zhì)和直角三角形斜邊上的中線(xiàn)等于斜邊的一半等知識(shí),得出△DFC是等邊三角形是解題關(guān)鍵.                                                                       


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐標(biāo)平面上三點(diǎn).

(1)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;并寫(xiě)出B1點(diǎn)的坐標(biāo):___________

(2)若將△ABC頂點(diǎn)縱坐標(biāo)都乘以﹣1,橫坐標(biāo)不變,得到的△A2B2C2與△ABC有怎樣的位置關(guān)系:__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列四個(gè)圖形中,軸對(duì)稱(chēng)圖形的個(gè)數(shù)有(     )

A.1個(gè)  B.2個(gè)   C.3個(gè)  D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


方程組的解是      .                                               

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:﹣4×=(  )                                                              

A.﹣2                         B.﹣                        C.2                            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=      .                                             

                                                                   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


為了了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查要求每人只選取一種喜好的書(shū)籍,如果沒(méi)有喜好的書(shū)籍,則作“其它”類(lèi)統(tǒng)計(jì).圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖.以下結(jié)論不正確的是( 。                    

A.由這兩個(gè)統(tǒng)計(jì)圖可知喜好“科普常識(shí)”的學(xué)生有90人                                   

B.若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛(ài)“科普常識(shí)”的學(xué)生約有360人              

C.這兩個(gè)統(tǒng)計(jì)圖不能確定喜好“小說(shuō)”的人數(shù)                                           

D.在扇形統(tǒng)計(jì)圖中,“漫畫(huà)”所在扇形的圓心角為72°                                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


汽車(chē)行駛前,油箱中有油55升,已知每百千米汽車(chē)耗油10升,油箱中的余油量Q(升)與它行駛的距離s(百千米)之間的函數(shù)關(guān)系式為_(kāi)__    ________;為了保證行車(chē)安全,油箱中至少存油5升,則汽車(chē)最多可行駛____________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,a∥b,∠1=60°,則∠2=(  )

A.120°  B.30°    C.70°   D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案