【題目】在四邊形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點(diǎn),F(xiàn)是AB延長線上一點(diǎn),且CE=BF.

(1)試說明:DE=DF;
(2)在圖中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關(guān)系并證明此結(jié)論;
(3)若題中條件“∠CAB=60°,∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時,(2)中結(jié)論仍然成立?(只寫結(jié)果不要證明).

【答案】
(1)

解:∵∠CAB+∠C+∠CDB+∠ABD=360°,∠CAB=60°,∠CDB=120°,

∴∠C+∠ABD=360°﹣60°﹣120°=180°,

又∵∠DBF+∠ABD=180°,

∴∠C=∠DBF,

在△CDE和△BDF中,

∴△CDE≌△BDF(SAS),

∴DE=DF.


(2)

解:如圖1,連接AD,猜想CE、EG、BG之間的數(shù)量關(guān)系為:CE+BG=EG.

證明:在△ABD和△ACD中,

∴△ABD≌△ACD(SSS),

∴∠BDA=∠CDA= ∠CDB= ×120°=60°,

又∵∠EDG=60°,

∴∠CDE=∠ADG,∠ADE=∠BDG,

由(1)可知△CDE≌△BDF,

∴∠CDE=∠BDF,

∴∠BDG+∠BDF=60°,

即∠FDG=60°,

∴∠EDG=∠FDG,

在△DEG和△DFG中,

∴△DEG≌△DFG,

∴EG=FG,

又∵CE=BF,F(xiàn)G=BF+BG,

∴CE+BG=EG


(3)

解:要使CE+BG=EG仍然成立,

則∠EDG=∠BDA=∠CDA= ∠CDB,

即∠EDG= (180°﹣α)=90°﹣ α,

∴當(dāng)∠EDG=90°﹣ α?xí)r, CE+BG=EG仍然成立


【解析】(1)首先判斷出∠C=∠DBF,然后根據(jù)全等三角形判定的方法,判斷出△CDE≌△BDF,根據(jù)全等三角形的性質(zhì)即可判斷出DE=DF.
(2)猜想CE、EG、BG之間的數(shù)量關(guān)系為:CE+BG=EG.首先根據(jù)全等三角形判定的方法,判斷出△ABD≌△ACD,即可判斷出∠BDA=∠CDA=60°;然后根據(jù)∠EDG=60°,可得∠CDE=∠ADG,∠ADE=∠BDG,再根據(jù)∠CDE=∠BDF,判斷出∠EDG=∠FDG,據(jù)此推得△DEG≌△DFG,所以EG=FG,最后根據(jù)CE=BF,判斷出CE+BG=EG即可.
(3)根據(jù)(2)的證明過程,要使CE+BG=EG仍然成立,則∠EDG=∠BDA=∠CDA= ∠CDB,即∠EDG= (180°-α)=90°- α,據(jù)此解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;

結(jié)論2:DM、MN的位置關(guān)系是 ;

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā),他們的騎行路程s(km)和騎行時間th)之間的函數(shù)關(guān)系如圖所示,給出下列說法:(1)他們都騎了20km;(2)乙在途中停留了0.5h;(3)甲、乙兩人同時到達(dá)目的地;(4)相遇后,甲的速度小于乙的速度.根據(jù)圖象信息,以上說法中正確的有( ).

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的說法中,正確的個數(shù)是(  )

①若a+b=0,則|a|=|b|

②若|a|=a,則a>0

③若|a|=|b|,則ab    

④若a為有理數(shù),則|a|=|﹣a|

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=80°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動點(diǎn)(A、B、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x.

(1)如圖1,若AB∥ON,則∠ABO的度數(shù)是
(2)如圖2,當(dāng)∠BAD=∠ABD時,試求x的值(要說明理由);
(3)如圖3,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE

1)若修建的斜坡BE的坡角為45°,求平臺DE的長;(結(jié)果保留根號)

2)一座建筑物GH距離A36米遠(yuǎn)(即AG36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點(diǎn)B、C、A、G、H在同一個平面內(nèi),點(diǎn)C、AG在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期三個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;

(2)將上面的條形統(tǒng)計圖補(bǔ)充完整;

(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b互為相反數(shù),cd互為倒數(shù),x的絕對值為2,求a+b+x2cdx

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的二元一次方程組
(1)求這個方程組的解;(用含有m的代數(shù)式表示)
(2)若這個方程組的解,x的值是負(fù)數(shù),y的值是正數(shù),求m的整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案