【題目】如圖,在等腰梯形ABCD中,ADBC,EF是邊BC上的兩點,且BE=CF,DEAF相交于梯形ABCD內一點O.

1)求證:OE=OF;

2)當EF=AD時,聯(lián)結AE、DF,先判斷四邊形AEFD是怎樣的四邊形,再證明你的結論.

【答案】1)見解析;(2)當EF=AD四邊形AEFD是矩形,證明見解析.

【解析】

1)根據(jù)等腰梯形的性質得到AB=DC,∠B=C,結合題意得到BF=CE,根據(jù)SAS得到ABFDCE即可得到答案;

2)當EF=AD四邊形AEFD是矩形,根據(jù)平行線的判定得到四邊形AEFD是平行四邊形,再由全等三角形的性質得到答案.

1)在等腰梯形ABCD
AB=DC,∠B=C

又∵BE=FCBF=CE

ABFDCESAS
∴∠AFB=CEDOE=OF
2)當EF=AD四邊形AEFD是矩形
證明:ADBCEF=AD
∴四邊形AEFD是平行四邊形
由⑴知ABFDCEAF=DE
∴平行四邊形AEFD是矩形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC和△DEF的頂點分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).

按下列要求畫圖:以點O為位似中心,將ABC向y軸左側按比例尺2:1放大得ABC的位似圖形△A1B1C1,并解決下列問題:

(1)頂點A1的坐標為 ,B1的坐標為 ,C1的坐標為 ;

(2)請你利用旋轉、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與DEF拼接成一個平行四邊形(非正方形)寫出符合要求的變換過程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學問題:計算(其中m,n都是正整數(shù),且m2,n1).

探究問題:為解決上面的數(shù)學問題,我們運用數(shù)形結合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關系和幾何圖形巧妙地結合起來,并采取一般問題特殊化的策略來進行探究.

探究一:計算

1次分割,把正方形的面積二等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

探究二:計算++++

1次分割,把正方形的面積三等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣,

兩邊同除以2,得++++=

探究三:計算++++

(仿照上述方法,只畫出第n次分割圖,在圖上標注陰影部分面積,并寫出探究過程)

解決問題:計算++++

(只需畫出第n次分割圖,在圖上標注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:_________,

所以, ++++=________

拓廣應用:計算 ++++

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,BD為對角線.

(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);

(2)在(1)的條件下,若AB=4,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關系如下表:

(1)當桌子上放有個碟子時,請寫出此時碟子的高度(用含的式子表示);

(2)分別從三個方向上看,其三視圖如下圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),,按此方式依次操作,則第6個正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,某活動小組用棋子擺出了下列圖形:

……

1個圖形 2個圖形 3個圖形 4個圖形

1)探索新知:

①第個圖形需要_________枚棋子;②第個圖形需要__________枚棋子.

2)思維拓展:

小明說:“我要用枚棋子擺出一個符合以上規(guī)律的圖形”,你認為小明能擺出嗎?如果能擺出,請問擺出的是第幾個圖形;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知為直線上一點,互補,、分別是、的平分線,.

1相等嗎?請說明理由;

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,把表示數(shù)1的點稱為基準點,記作點.對于兩個不同的點MN,若點M、點N到點的距離相等,則稱點M與點N互為基準變換點.例如:圖1,M表示數(shù)-1,N表示數(shù)3,它們與基準點的距離都是2個單位長度,點M與點N互為基準變換點.

1)已知點A表示數(shù)a,點B表示數(shù)b,點A與點B互為基準變換點.

①若a=0,則b=_________;若a=4,則b=_________;

②用含a的式子表示b,則b=____________

2)對點A進行如下操作:先把點A表示的數(shù)乘以2.5,再把所得數(shù)表示的點沿著數(shù)軸向左移動3個單位長度得到點B 若點A與點B互為基準變換點,則點A表示的數(shù)是___________;

(3)點P在點Q的左邊,點P與點Q之間的距離為8個單位長度.對P、Q兩點做如下操作:點P沿數(shù)軸向右移動k(k>0)個單位長度得到,的基準變換點,點沿數(shù)軸向右移動k個單位長度得到,的基準變換點,…,依此順序不斷地重復,得到,,…,為Q的基準變換點,將數(shù)軸沿原點對折后的落點為,的基準變換點,將數(shù)軸沿原點對折后的落點為,…,依此順序不斷地重復,得到,,…,.若無論k為何值,兩點間的距離都是4,則n=__________

查看答案和解析>>

同步練習冊答案