【題目】如圖,拋物線yx22x3x軸交于點(diǎn)A(﹣1,0),點(diǎn)B3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD

1)直接寫出點(diǎn)CD的坐標(biāo);

2)求△ABD的面積;

3)點(diǎn)P是拋物線上的一動(dòng)點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).

【答案】(1)D1,﹣4);(2)8;(3)(1+2)、(1,2)、(1+,﹣2)、(1,﹣2).

【解析】

1)利用拋物線與y軸交點(diǎn)求法得出C點(diǎn)坐標(biāo),再利用配方法求出其頂點(diǎn)坐標(biāo);

2)利用D點(diǎn)坐標(biāo)得出△ABD的面積;

3)利用△ABD的面積得出△ABP的面積,進(jìn)而求出P點(diǎn)縱坐標(biāo),進(jìn)而求出其橫坐標(biāo).

解:(1)當(dāng)x0,則y=﹣3,

C0,﹣3),

yx22x3

=(x124,

D1,﹣4);

2點(diǎn)A(﹣1,0),點(diǎn)B30),

∴AB4,

∴SABD×4×48;

3∵△ABP的面積是△ABD面積的

∴SABP4,

∵AB4

∴P點(diǎn)縱坐標(biāo)為2或﹣2,

當(dāng)P點(diǎn)縱坐標(biāo)為2,則2x22x3,

解得:x11+x21,

此時(shí)P點(diǎn)坐標(biāo)為:(1+2)或(1,2),

當(dāng)P點(diǎn)縱坐標(biāo)為﹣2,則﹣2x22x3,

解得:x11+,x21

此時(shí)P點(diǎn)坐標(biāo)為:(1+,﹣2)或(1,﹣2),

綜上所述:點(diǎn)P坐標(biāo)為:(1+,2)、(1,2)、(1+,﹣2)、(1,﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,點(diǎn)P在斜邊AB上,將ABP繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)P到達(dá)點(diǎn)Q

1)在原圖上畫出旋轉(zhuǎn)后的圖形.

2)若AB2,PC3PB,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,大圓O的半徑OC是小圓O1的直徑,且有OC垂直于圓O的直徑AB.圓O1的切線ADOC的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為D.已知圓O1的半徑為r,則AO1_____,DE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿EF對(duì)折,點(diǎn)A1恰好落在CD邊上的中點(diǎn)處,線段A1B1BC于點(diǎn)G,若AB6AD9,則CG的長(zhǎng)度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,AEBC于點(diǎn)E,AC為對(duì)角線,點(diǎn)O為對(duì)角線AC的中點(diǎn).

(1)如圖1,若ABAC,AH平分∠BACBC于點(diǎn)H,連接EOOE2,CD3,求AH的長(zhǎng);

(2)如圖2,若AEEC,過CCD的垂線交AE于點(diǎn)F,連接BF并延長(zhǎng)交AD于點(diǎn)G,連接GO并延長(zhǎng)GOBC于點(diǎn)P,求證:DG2EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,,點(diǎn)點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

1)當(dāng)為何值時(shí),;

2)當(dāng),求的值;

3能否與相似?若能,求出的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+15mx50m≠0

1)求證:無論m為任何非0實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根.

2)若拋物線ymx2+15mx5m≠0)與x軸交于Ax10)、Bx20)兩點(diǎn),且|x1x2|6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB為圓O的切線,切點(diǎn)分別為A、BPOAB于點(diǎn)C,PO的延長(zhǎng)線交圓O于點(diǎn)D,下列結(jié)論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).

1)設(shè)每個(gè)定價(jià)增加x元,此時(shí)的銷售量是多少?(用含x的代數(shù)式表示)

2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?

3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案