【題目】計(jì)算或化簡(jiǎn):
(1)3-(-8)+(-5)+6
(2).
(3)-23×(-8)-(-)3×(-16)+×(-3)2
(4)先化簡(jiǎn),再求值:
,其中,.
【答案】(1)12;(2)-4;(3)66;(4),-6.
【解析】
(1)原式利用減法法則變形,計(jì)算即可求出值;
(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除法運(yùn)算,最后算加減運(yùn)算即可求出值;
(3)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可求出值;
(4)原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,將x與y的值代入計(jì)算即可求出值.
解:(1)原式=3+8-5+6=12;
(2)原式==== -4;
(3)原式=-8×(-8)+×(-16)+×9=64-2+4=66;
(4)原式=,
=,
=,
=,
當(dāng),時(shí),原式==-6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣,0),點(diǎn)B的坐標(biāo)為(0,3).
(1)求過A,B兩點(diǎn)直線的函數(shù)表達(dá)式;
(2)過B點(diǎn)作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將口ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(0,3)的一次函數(shù)y1=kx+b(k≠0)的圖象與正比例函數(shù)y2=2x的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)是1.
(1)求點(diǎn)B的坐標(biāo)及k、b的值;
(2)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積
(3)當(dāng)y1≤y2時(shí),自變量x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,DE⊥BC,AB⊥BC,求證:∠A=∠3.
證明:∵ DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )
∴DE∥AB(_________ ___)
∴∠2=____ (__________ ___________)
∠1= (____________ _________)
又∵∠1=∠2(_____________________)
∴∠A=∠3(_____________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系(如圖),直線的經(jīng)過點(diǎn)和點(diǎn).
(1)求、的值;
(2)如果拋物線經(jīng)過點(diǎn)、,該拋物線的頂點(diǎn)為點(diǎn),求的值;
(3)設(shè)點(diǎn)在直線上,且在第一象限內(nèi),直線與軸的交點(diǎn)為點(diǎn),如果,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=﹣x+3與x軸相交于點(diǎn)A,直線l2:y=kx+b經(jīng)過點(diǎn)(3,﹣1),與x軸交于點(diǎn)B(6,0),與y軸交于點(diǎn)C,與直線l1相交于點(diǎn)D.
(1)求直線l2的函數(shù)關(guān)系式;
(2)點(diǎn)P是l2上的一點(diǎn),若△ABP的面積等于△ABD的面積的2倍,求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)Q的坐標(biāo)為(m,3),是否存在m的值使得QA+QB最?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點(diǎn),P為⊙O上一動(dòng)點(diǎn),連接AP、CP,過C作CD⊥CP交AP于點(diǎn)D,點(diǎn)P從B運(yùn)動(dòng)到C時(shí),則點(diǎn)D運(yùn)動(dòng)的路徑長(zhǎng)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com