【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為A0,2),B20),直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C和點(diǎn)D(﹣1,a).

1)求直線AB和反比例函數(shù)的解析式;

2)求∠ACO的度數(shù).

【答案】1y=-x2y=-;(230°

【解析】

試題(1)設(shè)直線AB的解析式為y=kx+bk≠0),將AB坐標(biāo)代入求出kb的值,確定出直線AB的解析式,將D坐標(biāo)代入直線AB解析式中求出a的值,確定出D的坐標(biāo),將D坐標(biāo)代入反比例解析式中求出m的值,即可確定出反比例解析式;(2)聯(lián)立兩函數(shù)解析式求出C坐標(biāo),過(guò)CCH垂直于x軸,在直角三角形OCH中,由OHHC的長(zhǎng)求出tan∠COH的值,利用特殊角的三角函數(shù)值求出∠COH的度數(shù),在三角形AOB中,由OAOB的長(zhǎng)求出tan∠ABO的值,進(jìn)而求出∠ABO的度數(shù),由∠ABO-∠COH即可求出∠ACO的度數(shù).

試題解析:(1)設(shè)直線AB的解析式為y=kx+bk≠0),

A0,2),B2,0)代入得:,解得:.

直線AB解析式為.

D-1,a)代入直線AB解析式得:,則D-1,.

D坐標(biāo)代入中,得:m=.

反比例解析式為.

2)聯(lián)立兩函數(shù)解析式得:,解得:.

∴C坐標(biāo)為(3,.

過(guò)點(diǎn)CCH⊥x軸于點(diǎn)H,

Rt△OHC中,CH=,OH=3,

.∴∠COH=30°.

Rt△AOB中,∴∠ABO=60°.

∴∠ACO=∠ABO-∠COH=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=BC,點(diǎn)E為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接CE,將∠ACE的兩邊CE,CA分別繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到射線CE,,CA,過(guò)點(diǎn)AAB的垂線AD,分別交射線CE,CA,于點(diǎn)F,G.

(1)依題意補(bǔ)全圖形;

(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示);

(3)用等式表示線段AE,AFBC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組,利用樹(shù)影測(cè)量樹(shù)高,如圖(1),已測(cè)出樹(shù)AB的影長(zhǎng)AC12米,并測(cè)出此時(shí)太陽(yáng)光線與地面成30°夾角.

1)求出樹(shù)高AB;

2)因水土流失,此時(shí)樹(shù)AB沿太陽(yáng)光線方向倒下,在傾倒過(guò)程中,樹(shù)影長(zhǎng)度發(fā)生了變化,假設(shè)太陽(yáng)光線與地面夾角保持不變.求樹(shù)的最大影長(zhǎng).(用圖(2)解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 y=﹣x22x+3 的圖象與 x 軸交于 A、B 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的左邊),與 y軸交于點(diǎn) C,點(diǎn) D 為拋物線的頂點(diǎn).

1)求點(diǎn) AB、C 的坐標(biāo);

2)點(diǎn) Mm,0)為線段 AB 上一點(diǎn)(點(diǎn) M 不與點(diǎn) AB 重合),過(guò)點(diǎn) M x 軸的垂線,與直線 AC 交于點(diǎn) E,與拋物線交于點(diǎn) P,過(guò)點(diǎn) P PQAB 交拋物線于點(diǎn) Q,過(guò)點(diǎn) Q QNx 軸于點(diǎn) N,可得矩形 PQNM.如圖,點(diǎn) P 在點(diǎn) Q 左邊,試用含 m 的式子表示矩形 PQNM 的周長(zhǎng);

3)當(dāng)矩形 PQNM 的周長(zhǎng)最大時(shí),m 的值是多少?并求出此時(shí)的△AEM 的面積;

4)在(3)的條件下,當(dāng)矩形 PMNQ 的周長(zhǎng)最大時(shí),連接 DQ,過(guò)拋物線上一點(diǎn) F y 軸的平行線,與直線 AC 交于點(diǎn) G(點(diǎn) G 在點(diǎn) F 的上方).若 FG2DQ,求點(diǎn) F 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校食堂的中餐與晚餐的資費(fèi)標(biāo)準(zhǔn)如下:

種類

單價(jià)

米飯

0.5元/份

A類套餐菜

3.5元/份

B類套餐菜

2.5元/份

小杰同學(xué)某星期從周一到周五每天的中餐與晚餐均在學(xué)校選用A類或B類中的一份套餐菜與一份米飯用餐,這五天共消費(fèi)36元.請(qǐng)問(wèn)小杰在這五天內(nèi),A,B類套餐菜各選用了多少次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的是( )

A. 兩個(gè)相似三角形面積比為23,則周長(zhǎng)比是49

B. 相似圖形一定構(gòu)成位似圖形

C. 如果點(diǎn)D、E分別在△ABC的邊AB、AC上,△ABC與△ADE相似,則DEBC

D. RtABC中,斜邊上的高CD2ADBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖像經(jīng)過(guò)點(diǎn),軸交于點(diǎn),、分別為軸、直線上的動(dòng)點(diǎn),當(dāng)四邊形的周長(zhǎng)最小時(shí),所在直線對(duì)應(yīng)的函數(shù)表達(dá)式是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是直徑,CD是弦,ABCD

1P上一點(diǎn)(不與CD重合),求證:∠CPD=COB;

2)點(diǎn)P在劣弧CD上(不與CD重合)時(shí),∠CPD與∠COB有什么數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案