【題目】四個(gè)全等的直角三角形按圖示方式圍成正方形ABCD,過各較長(zhǎng)直角邊的中點(diǎn)作垂線,圍成面積為S的小正方形EFGH.已知AM為Rt△ABM較長(zhǎng)直角邊,AM=2EF,則正方形ABCD的面積為( 。
A. 14SB. 13SC. 12SD. 11S
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于、兩點(diǎn).若在拋物線上有且只有三個(gè)不同的點(diǎn)、、,使得、、的面積都等于,則的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】木匠黃師傅用長(zhǎng)AB=3,寬BC=2的矩形木板做一個(gè)盡可能大的圓形桌面,他設(shè)計(jì)了四種方案:
方案一:直接鋸一個(gè)半徑最大的圓;
方案二:圓心O1,O2分別在CD,AB上,半徑分別是O1C,O2A,鋸兩個(gè)外切的半圓拼成一個(gè)圓;
方案三:沿對(duì)角線AC將矩形鋸成兩個(gè)三角形,適當(dāng)平移三角形并鋸一個(gè)最大的圓;
方案四:鋸一塊小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板鋸一個(gè)盡可能大的圓。
(1)寫出方案一中的圓的半徑;
(2)通過計(jì)算說明方案二和方案三中,哪個(gè)圓的半徑較大?
(3)在方案四中,設(shè)CE=(),圓的半徑為,
①求關(guān)于的函數(shù)解析式;
②當(dāng)取何值時(shí)圓的半徑最大?最大半徑是多少?并說明四種方案中,哪一個(gè)圓形桌面的半徑最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB在平面直角坐標(biāo)系中,點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,,將△AOB沿直線BE折疊,使得OB邊落在AB上,點(diǎn)O與點(diǎn)D重合.
(1)求直線BE的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)x軸上是否存在點(diǎn)P,使△PAD為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣4ax+3a(a>0)與x軸交于A,B兩點(diǎn)(A在B的左側(cè)).
(1)求拋物線的對(duì)稱軸及點(diǎn)A,B的坐標(biāo);
(2)點(diǎn)C(t,3)是拋物線y=ax2﹣4ax+3a(a>0)上一點(diǎn),(點(diǎn)C在對(duì)稱軸的右側(cè)),過點(diǎn)C作x軸的垂線,垂足為點(diǎn)D.
①當(dāng)CD=AD時(shí),求此時(shí)拋物線的表達(dá)式;
②當(dāng)CD>AD時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的個(gè)數(shù)是
①若代數(shù)式有意義,則x的取值范圍為x≤1且x≠0.
②我市生態(tài)旅游初步形成規(guī)模,2012年全年生態(tài)旅游收入為302 600 000元,保留三個(gè)有效數(shù)字用科學(xué)記數(shù)法表示為3.03×108元.
③若反比例函數(shù)(m為常數(shù)),當(dāng)x>0時(shí),y隨x增大而增大,則一次函數(shù)y=﹣2x+m的圖象一定不經(jīng)過第一象限.
④若函數(shù)的圖象關(guān)于y軸對(duì)稱,則函數(shù)稱為偶函數(shù),下列三個(gè)函數(shù):y=3,y=2x+1,y=x2中偶函數(shù)的個(gè)數(shù)為2個(gè).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點(diǎn)P、Q、K、M、N.設(shè)△BPQ,△DKM,△CNH的面積依次為S1,S2,S3.若S1+S3=20,則S2的值為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com