【題目】2012年7月1日起,重慶實施階梯電價,市民家庭每月用電量使用情況不同,按照用電量區(qū)間價格繳納用電費用.其收費標(biāo)準(zhǔn)如下表:階梯電價分三個檔次.設(shè)某用戶每月用電量為x度,應(yīng)交電費為y元.
檔次 | 用電量 | 每度電價格 |
第一檔 | 不超過200度的部分 | 0.52元 |
第二檔 | 超過200度不超過400度的部分 | 0.57元 |
第三檔 | 超過400度的部分 | 0.82元 |
(1)直接寫出y與x的關(guān)系式;
(2)小明家6、7月份共用電800度,應(yīng)交電費471元,已知7月份的用電量比6月份的用電量大,求小明家6、7月份各用電多少度?
【答案】(1);(2)小明家6月份用電量為260度,則7月份用電量為540度.
【解析】
(1)分段函數(shù),分別根據(jù)每一段的情況求出即可;
(2)設(shè)6月份用電量為a,則7月份用電量為(800-a),根據(jù)題意確定a的取值范圍,再根據(jù)分段函數(shù)討論解答即可.
(1)當(dāng)0≤x≤200時,y=0.52x;
當(dāng)200<x≤400時,y=0.52×200+(x﹣200)×0.57=0.57x﹣10;
當(dāng)x>400時,y=0.52×200+200×0.57+(x﹣400)=0.82x﹣110;
綜上所述,;
(2)設(shè)6月份用電量為a,則7月份用電量為(800﹣a),
因為7月份的用電量比6月份的用電量大,所以a<800﹣a,即a<400.
當(dāng)0≤x≤200時,800﹣a>400,
應(yīng)交電費為0.52a+0.82×(800﹣a)﹣110=471,解得a=250,
因為250>200,所以不符合題意,舍去.
當(dāng)200<x≤400時,800﹣a>400,
應(yīng)交電費為0.57a﹣10+0.82×(800﹣a)﹣110=471,解得a=260,
因為200<260<400時,所以符合條件,800﹣a=800﹣260=540(度).
綜上所述,小明家6月份用電量為260度,則7月份用電量為540度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BDA=115°時,∠BAD= °;點D從B向C運動時,∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀也在改變,判斷當(dāng)∠BDA等于多少度時,△ADE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)家們對于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨特的貢獻(xiàn)和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若,請你利用這個圖形解決下列問題:
(1)試說明;
(2)如果大正方形的面積是10,小正方形的面積是2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( 。
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實數(shù))
D. 3b+2c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)當(dāng)t=2秒時,求PQ的長;
(2)求出發(fā)時間為幾秒時,△PQB是等腰三角形?
(3)若Q沿B→C→A方向運動,則當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2分別與x軸、y軸相交于點A、點B
(1)求點A和點B的坐標(biāo);
(2)若點P是y軸上的一點,設(shè)△AOB、△ABP的面積分別為S△AOB與S△ABP,且S△ABP=2S△AOB,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=5,AC=8,BD,CD分別平分∠ABC,∠ACB,過點D作直線平行于BC,交AB,AC于E,F,則△AEF的周長為( 。
A.11B.13C.15D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當(dāng)α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com