【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.

(1)已知甲隊(duì)在初賽階段的積分為分,甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);

(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?

【答案】91) 甲隊(duì)勝了8場(chǎng),則負(fù)了2場(chǎng);(2) 乙隊(duì)在初賽階段至少要?jiǎng)?場(chǎng).

【解析】

試題分析:(1)設(shè)甲隊(duì)勝了x場(chǎng),則負(fù)了(10x)場(chǎng),根據(jù)每隊(duì)勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分,利用甲隊(duì)在初賽階段的積分為18分,進(jìn)而得出等式求出答案;

(2)設(shè)乙隊(duì)在初賽階段勝a場(chǎng),根據(jù)積分超過(guò)15分才能獲得參賽資格,進(jìn)而得出答案.

試題解析:(1)設(shè)甲隊(duì)勝了x場(chǎng),則負(fù)了(10﹣x)場(chǎng),根據(jù)題意可得:

2x+10﹣x=18,

解得:x=8,

則10﹣x=2,

答:甲隊(duì)勝了8場(chǎng),則負(fù)了2場(chǎng);

(2)設(shè)乙隊(duì)在初賽階段勝a場(chǎng),根據(jù)題意可得:

2a+(10﹣a)15,

解得:a5,

答:乙隊(duì)在初賽階段至少要?jiǎng)?場(chǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某無(wú)人機(jī)于空中A處探測(cè)到目標(biāo)B,D,從無(wú)人機(jī)A上看目標(biāo)B,D的俯角分別為30°,60°,此時(shí)無(wú)人機(jī)的飛行高度AC為60m,隨后無(wú)人機(jī)從A處繼續(xù)飛行30 m到達(dá)A′處,
(1)求A,B之間的距離;
(2)求從無(wú)人機(jī)A′上看目標(biāo)D的俯角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:
在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,==,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵=∴b====3
理解應(yīng)用:
如圖,甲船以每小時(shí)30海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里.

(1)判斷△A1A2B2的形狀,并給出證明
(2)求乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】試找出如圖所示的每個(gè)正多邊形的對(duì)稱軸的條數(shù),并填入表格中.

正多邊形的邊數(shù)

3

4

5

6

7

8

對(duì)稱軸的條數(shù)

根據(jù)上表,請(qǐng)就一個(gè)正n邊形對(duì)稱軸的條數(shù)作一猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長(zhǎng)線上,則等式DE2=BD2+CE2還能成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件: , 使△AEH≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC∠B=40°,ADBC邊上的高,且∠DAC=20°,∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
結(jié)束】
16

【題目】如圖所示,EDAB,AC上的兩點(diǎn),BD,CE交于點(diǎn)O,且AB=AC,使△ACE≌△ABD,你補(bǔ)充的條件是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.

(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案