【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為-4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點DBD與y軸交于點E,連接PE設(shè)點P運動的時間為ts).

1寫出PBD的度數(shù)和點D的坐標(biāo)點D的坐標(biāo)用t表示

2探索POE周長是否隨時間t的變化而變化,若變化,說明理由;若不變,試求這個定值

3當(dāng)t為何值時,PBE為等腰三角形?

【答案】145°,t,t).2POE周長是定值,該定值為83當(dāng)t為4秒或4-4秒時,PBE為等腰三角形

【解析

試題1易證BAP≌△PQD,從而得到DQ=AP=t,從而可以求出PBD的度數(shù)和點D的坐標(biāo);

2由于EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE容易得到POE周長等于AO+CO=8,從而解決問題;

3EP=AP+CE,由于PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結(jié)合條件進行取舍,最終確定符合要求的t值

試題解析:1如圖1,

由題可得:AP=OQ=1×t=t

AO=PQ

四邊形OABC是正方形,

AO=AB=BC=OC,

BAO=AOC=OCB=ABC=90°

DPBP,

∴∠BPD=90°

∴∠BPA=90°-DPQ=PDQ

AO=PQ,AO=AB,

AB=PQ

BAP和PQD中,

∴△BAP≌△PQDAAS).

AP=QD,BP=PD

∵∠BPD=90°,BP=PD,

∴∠PBD=PDB=45°

AP=t,

DQ=t

點D坐標(biāo)為t,t).

2∵∠EBP=45°

由圖1可以得到EP=CE+AP,

OP+PE+OE=OP+AP+CE+OE

=AO+CO

=4+4

=8

∴△POE周長是定值,該定值為8

3若PB=PE,

PAB≌△DQP得PB=PD,

顯然PB≠PE,

這種情況應(yīng)舍去

若EB=EP,

PBE=BPE=45°

∴∠BEP=90°

∴∠PEO=90°-BEC=EBC

POE和ECB中,

∴△POE≌△ECBAAS).

OE=CB=OC

點E與點C重合EC=0).

點P與點O重合PO=0).

點B-4,4,

AO=CO=4

此時t=AP=AO=4

若BP=BE,

在RtBAP和RtBCE中,

RtBAPRtBCEHL).

AP=CE

AP=t,

CE=t

PO=EO=4-t

∵∠POE=90°,

PE=

延長OA到點F,使得AF=CE,連接BF,如圖2所示

FAB和ECB中,

∴△FAB≌△ECB

FB=EB,FBA=EBC

∵∠EBP=45°,ABC=90°,

∴∠ABP+EBC=45°

∴∠FBP=FBA+ABP

=EBC+ABP=45°

∴∠FBP=EBP

FBP和EBP中,

∴△FBP≌△EBPSAS).

FP=EP

EP=FP=FA+AP

=CE+AP

EP=t+t=2t

4-t=2t

解得:t=4-4

當(dāng)t為4秒或4-4秒時,PBE為等腰三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線y=2x-2x軸交于點A,與y軸交于點B.

(1)如圖①,A的坐標(biāo)為_______,B的坐標(biāo)為_______;

(2)如圖②,C是直線AB上不同于點B的點,且CA=AB.

①求點C的坐標(biāo);

②過動點P(m,0)且垂直與x軸的直線與直線AB交于點E,若點E不在線段BC上,則m的取值范圍是_______;

(3)若∠ABN=45,求直線BN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的有(

①有理數(shù)包括正有理數(shù)和負有理數(shù); ②絕對值等于它本身的數(shù)是非負數(shù);③若|b|=|5|,則b=-5 ; ④當(dāng)b=2時,5|2b4|有最小值是5;⑤若、互為相反數(shù),則;⑥是關(guān)于、的六次三項式.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,CEAD于點E,CB=CE,點FCD邊上的一點,CB=CF,連接BFCE于點G.

(1)若,CF=,求CG的長;

(2)求證:AB=ED+CG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①若a<1,則(a﹣1)=﹣;②圓是中心對稱圖形又是軸對稱圖形;③的算術(shù)平方根是4;④如果方程ax2+2x+1=0有實數(shù)根,則實數(shù)a≤1.其中正確的命題個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計劃成立文學(xué)鑒賞”、“國際象棋”、“音樂舞蹈書法等說個社團,要求每位學(xué)生都自主選擇其中一個社團,為此,隨機調(diào)查了本校部分學(xué)生選擇社團的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):

選擇意向

文學(xué)鑒賞

國際象棋

音樂舞蹈

書法

其他

所占百分比

 a

 20%

 b

 10%

 5%

根據(jù)統(tǒng)計圖表的信息,解答下列問題:

(1)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值;

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有1200名學(xué)生,試估計全校選擇音樂舞蹈社團的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點AC分別在軸和軸上,點B的坐標(biāo)為2,3。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。

1)求k的值及點E的坐標(biāo);

2)若點F是邊上一點,且FBC∽△DEB,求直線FB的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圓中,、是圓的半徑,點在劣弧弧上,,,,聯(lián)結(jié).

(1)如圖1,求證:平分;

(2)點在弦的延長線上,聯(lián)結(jié),如果△是直角三角形,請你在如圖2中畫出

的位置并求的長;

(3)如圖3,點在弦上,與點不重合,聯(lián)結(jié)與弦交于點,設(shè)點與點

距離為,△的面積為,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案