【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標軸的交點為,;②圖象具有對稱性,對稱軸是直線;③當時,函數(shù)值值的增大而增大;④當時,函數(shù)的最小值是0;⑤當時,函數(shù)的最大值是4.其中正確結(jié)論的個數(shù)是______.

【答案】4

【解析】

坐標都滿足函數(shù),∴①是正確的;從圖象可以看出圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,②也是正確的;

根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當時,函數(shù)值值的增大而增大,因此③也是正確的;函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應的的值為,因此④也是正確的;從圖象上看,當,函數(shù)值要大于當時的,因此⑤時不正確的;逐個判斷之后,可得出答案.

解:①∵,坐標都滿足函數(shù),∴①是正確的;

②從圖象可知圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,因此②也是正確的;

③根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當時,函數(shù)值值的增大而增大,因此③也是正確的;

④函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應的的值為,因此④也是正確的;

⑤從圖象上看,當,函數(shù)值要大于當時的,因此⑤時不正確的;

故答案是:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=x0)的圖象上,ABy軸于點B,點Cx軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點DOB的中點,若△ADE的面積為6,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線和拋物線都經(jīng)過點A1,0),B,且當時,二次函數(shù)的值為

1)求的值和拋物線的解析式;

2)求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=mx2+2mx3x軸交于Ax1,0),Bx2,0)兩點,與y軸交于點C,且x2x1=4

1)求拋物線的解析式;

2)求拋物線的對稱軸上存在一點P,使PA+PC的值最小,求此時點P的坐標;

3)點M是拋物線上的一動點,且在第三象限.

①當M點運動到何處時,AMB的面積最大?求出AMB的最大面積及此時點M的坐標.

②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1D,EABC的邊BC上,若ADE是等邊三角形則稱ABC可內(nèi)嵌,ADE叫做ABC的內(nèi)嵌三角形.

1)直角三角形______可內(nèi)嵌.(填寫一定、一定不不一定

2)如圖2,在ABC中,∠BAC=120°,ADEABC的內(nèi)嵌三角形,試說明AB2=BDBC是否成立?如果成立,請給出證明;如果不一定成立,請舉例說明.

3)在(2)的條件下,如果AB=1,AC=2,求ABC的內(nèi)嵌ADE的邊長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.

1)求證:BAD=CBD

2)若∠AEB=125°,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年某市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機”);第一次抽取卡片小悅被抽中的概率為

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊CDRtEFG的直角邊EF重合,將正方形ABCD1cm/s的速度沿FE方向移動,在移動過程中,邊CD始終與邊EF重合(移動開始時點C與點F重合).連接AE,過點CAE的平行線交直線EG于點H,連接HD.已知正方形ABCD的邊長為1cmEF=4cm,設正方形移動時間為xs),線段EH的長為ycm),其中0≤x≤2.5

1)當x=2時,AE的長為 ;

2)試求出y關于x的函數(shù)關系式,并求出EHDADE的面積之差;

3)當正方形ABCD移動時間x= 時,線段HD所在直線經(jīng)過點B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

同步練習冊答案