(2003•三明)已知兩圓外公切線的長為l,兩圓半徑分別為R、r(R≥r),若,則兩圓的位置關系為( )
A.外離
B.外切
C.相交
D.內切
【答案】分析:要判斷兩圓的位置關系,關鍵是計算出兩圓的圓心距.連接AW,SB,WS,作SE⊥AW.根據(jù)矩形和直角三角形的性質進行計算;再根據(jù)數(shù)量關系來判斷兩圓的位置關系:
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內切,則P=R-r;內含,則P<R-r.(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:
如圖,圓W的半徑為R,圓S的半徑為r,外公切線為AB,切點分別為A,B.
連接AW,SB,WS,作SE⊥AW.
由切線的概念知,∠WAB=∠ABS=∠AES=90°.
∴四邊形ABSE是矩形,有AB=ES=l,AE=BS=r,EW=AW-AE=R-r,
由勾股定理得,WS2=EW2+ES2=(R-r)2+(22=(R+r)2,
即圓心距等于兩圓半徑的和,
∴兩圓外切.
故選B.
點評:本題通過作輔助線,構造矩形和直角三角形,利用勾股定理求解.還利用兩圓外切時,圓心距等于兩圓半徑的和進行判定兩圓的位置關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2003•三明)已知y-1與x成正比例,且x=2時,y=5,寫出y與x之間的函數(shù)關系式;當x=-1時,求y的值;當y=0時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年福建省三明市中考數(shù)學試卷(解析版) 題型:解答題

(2003•三明)已知y-1與x成正比例,且x=2時,y=5,寫出y與x之間的函數(shù)關系式;當x=-1時,求y的值;當y=0時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2003•三明)已知:如圖,邊長為2的正五邊形ABCDE內接于⊙O,AB、DC的延長線交于點F,過點E作EG∥CB交BA的延長線于點G.
(1)求證:AB2=AG•BF;
(2)證明:EG與⊙O相切,并求AG、BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2003•三明)已知:如圖,線段AM∥DN,直線l與AM、DN分別交于點B、C,直線l繞BC的中點P旋轉(點C由D點向N點方向移動).
(1)線段BC與AD、AB、CD圍成的圖形,在初始狀態(tài)下,形狀是△ABD(即△ABC),請你寫出變化過程中其余的各種特殊四邊形名稱;
(2)任取變化過程中的兩個圖形,測量AB、CD長度后分別計算同一個圖形的AB+CD(精確到1cm),比較這兩個和是否相同,試加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2003•三明)已知:如圖,線段AM∥DN,直線l與AM、DN分別交于點B、C,直線l繞BC的中點P旋轉(點C由D點向N點方向移動).
(1)線段BC與AD、AB、CD圍成的圖形,在初始狀態(tài)下,形狀是△ABD(即△ABC),請你寫出變化過程中其余的各種特殊四邊形名稱;
(2)任取變化過程中的兩個圖形,測量AB、CD長度后分別計算同一個圖形的AB+CD(精確到1cm),比較這兩個和是否相同,試加以證明.

查看答案和解析>>

同步練習冊答案