【題目】某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷(xiāo)售量將減少10個(gè).
(1)設(shè)每個(gè)定價(jià)增加x元,此時(shí)的銷(xiāo)售量是多少?(用含x的代數(shù)式表示)
(2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?
(3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?
【答案】(1)400-10x;(2)70元;(3)6250元
【解析】
(1)根據(jù)銷(xiāo)售量=400-10x列關(guān)系式;(2)總利潤(rùn)=每個(gè)的利潤(rùn)×銷(xiāo)售量,銷(xiāo)售量為400-10x,列方程求解,根據(jù)題意取舍;(3)利用函數(shù)的性質(zhì)求最值.
解:(1)∵定價(jià)每增加1元,銷(xiāo)售量將減少10個(gè)
∴設(shè)每個(gè)定價(jià)增加x元,此時(shí)的銷(xiāo)售量是400-10x;
(2)由題意可得:(50-40+x)(400-10x)=6000
整理得:x2-30x+200=0,
解得x1=20,x2=10
∵使進(jìn)貨量較少
∴x2=10(舍去),
∴每個(gè)定價(jià)70元;
(3)由題意可知,所獲利潤(rùn)y=(50-40+x)(400-10x)=-10x2+300x+4000,
當(dāng)x=時(shí),y最大=
所以每個(gè)定價(jià)為65元時(shí),獲得的最大利潤(rùn)為6250元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A(﹣1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD.
(1)直接寫(xiě)出點(diǎn)C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點(diǎn)P是拋物線上的一動(dòng)點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個(gè)小型的惠民停車(chē)場(chǎng),其布局如圖所示.已知停車(chē)場(chǎng)的長(zhǎng)為52米,寬為28米,陰影部分設(shè)計(jì)為停車(chē)位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車(chē)場(chǎng)共有車(chē)位64個(gè),據(jù)調(diào)查分析,當(dāng)每個(gè)車(chē)位的月租金為200元時(shí),可全部租出;當(dāng)每個(gè)車(chē)位的月租金每上漲10元,就會(huì)少租出1個(gè)車(chē)位.當(dāng)每個(gè)車(chē)位的月租金上漲多少元時(shí),停車(chē)場(chǎng)的月租金收入為14400元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是半徑為1的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,B為AN弧的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(dòng)(不與點(diǎn)B重合),同時(shí)點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長(zhǎng)線運(yùn)動(dòng),點(diǎn)C1與A1的運(yùn)動(dòng)速度相同,當(dāng)動(dòng)點(diǎn)C1停止運(yùn)動(dòng)時(shí),另一動(dòng)點(diǎn)A1也隨之停止運(yùn)動(dòng)。如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過(guò)點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請(qǐng)猜想E1F1,A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時(shí),求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中的三個(gè)頂點(diǎn)在⊙上,是優(yōu)弧上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合).
(1)當(dāng)圓心在內(nèi)部,時(shí),________.
(2)當(dāng)圓心在內(nèi)部,四邊形為平行四邊形時(shí),求的度數(shù);
(3)當(dāng)圓心在外部,四邊形為平行四邊形時(shí),請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小元設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:如圖,⊙O及⊙O上一點(diǎn)P.
求作:過(guò)點(diǎn)P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;
③連接并延長(zhǎng)BA與⊙A交于點(diǎn)C;
④作直線PC;
則直線PC即為所求.
根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據(jù)).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據(jù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com