【題目】如圖,內(nèi)接于圓,直徑的長(zhǎng)為2,過點(diǎn)的切線交的延長(zhǎng)線于點(diǎn).張老師要求添加條件后,編制一道題目,并解答.

1)在添加條件,求的長(zhǎng),請(qǐng)你解答.

2)以下是小明,小聰?shù)膶?duì)話:

小明:我加的條件是,就可以求出的長(zhǎng).

小聰:你這樣太簡(jiǎn)單了,我加的條件是,連結(jié),就可以證明全等.參考此對(duì)話,在內(nèi)容中添加條件,編制一道題目(可以添線、添字母),并解答.

【答案】1,見解析;(2)見解析.

【解析】

1)連接OC,如圖,利用切線的性質(zhì)得∠OCD=90°,再根據(jù)含30度的直角三角形三邊的關(guān)系得到OD=2,然后計(jì)算OA+OD即可;

2)添加∠DCB=30°,求AC的長(zhǎng),利用圓周角定理得到∠ACB=90°,再證明∠A=DCB=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系求AC的長(zhǎng).

1)連接OC,如圖,

CD為切線,

OCCD,

∴∠OCD=90°,

∵∠D=30°

OD=2OC=2,

AD=AO+OD=1+2=3

2)添加∠DCB=30°,求AC的長(zhǎng),

AB為直徑,

∴∠ACB=90°

∵∠ACO+OCB=90°,∠OCB+DCB=90°

∴∠ACO=DCB,

∵∠ACO=A

∴∠A=DCB=30°,

RtACB中,BC=AB=1,

AC=BC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠B30°,∠ACB90°,延長(zhǎng)CAO,使AOAC,以O為圓心,OA長(zhǎng)為半徑作OBA延長(zhǎng)線于點(diǎn)D,連接CD

1)求證:CDO的切線;

2)若AB4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)O是對(duì)角線BD的中點(diǎn).

1)觀察猜想:將圖1中的△BCD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2中△ECF的位置,連接AC,DE,則線段ACDE的數(shù)量關(guān)系是   ,直線ACDE的位置關(guān)系是   

2)類比探究:將圖2中的△ECF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3的位置,(1)中的結(jié)論是否成立?并說明理由.

3)拓展延伸:將圖2中的△ECF在平面內(nèi)旋轉(zhuǎn),設(shè)直線ACDE的交點(diǎn)為M,若AB4,請(qǐng)直接寫出BM的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點(diǎn)C作直線CDAB的延長(zhǎng)線于點(diǎn)D,且BD=OB,CD=CA

1)求證:CD是⊙O的切線.

2)如圖(2),過點(diǎn)CCEAB于點(diǎn)E,若⊙O的半徑為8,∠A=30°,求線段BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長(zhǎng)、寬均為3,高為8的長(zhǎng)方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長(zhǎng)進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于為半徑作弧,兩弧交于點(diǎn)MN;②作直線MN,且恰好經(jīng)過點(diǎn)A,與CD交于點(diǎn)E,連接BE,則下列說法錯(cuò)誤的是( )

A.B.C.AB=4,則D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為元/件,每天銷售(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

1)求之間的函數(shù)關(guān)系;

2)如果規(guī)定每天漆器筆筒的銷售量不低于件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家庭過期藥品屬于“國(guó)家危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對(duì)全市家庭作一次簡(jiǎn)單隨機(jī)抽樣調(diào)査.

(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號(hào))

在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽取;在全市常住人口中以家庭為單位隨機(jī)抽。

(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:

m= ,n=

補(bǔ)全條形統(tǒng)計(jì)圖;

根據(jù)調(diào)査數(shù)據(jù),你認(rèn)為該市市民家庭處理過期藥品最常見的方式是什么?

家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線交于點(diǎn),過點(diǎn)軸的平行線,分別交兩條拋物線于點(diǎn),則以下結(jié)論:①無論取何值,的值總是正數(shù);;③其中正確結(jié)論是( )

A. ①②B. ①③C. ②③D. 都正確

查看答案和解析>>

同步練習(xí)冊(cè)答案