【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
【答案】
(1)證明:∵△ABC是等邊三角形,
∴∠BAC=∠B=60°,AB=AC.
又∵AE=BD,
∴△AEC≌△BDA(SAS).
∴AD=CE 。
(2)解:∵ △AEC≌△BDA,
∴∠ACE=∠BAD.
∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°
【解析】(1)根據(jù)等邊三角形的性質(zhì)得出∠BAC=∠B=60°,AB=AC ,然后利用SAS判斷出△AEC≌△BDA ,根據(jù)全等三角形對應(yīng)邊相等得出AD=CE ;
(2)根據(jù)全等三角形對應(yīng)角相等得出∠ACE=∠BAD,根據(jù)三角形的外角定理及等量代換得出∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60° 。
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象的對稱軸是直線x=2,且圖象過點(1,2),與一次函數(shù)y=x+m的圖象交于(0,-1).
求兩個函數(shù)解析式;
求兩個函數(shù)圖象的另一個交點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸是x=1,與x軸有兩個交點,與y軸的交點坐標是(0,3),把它向下平移2個單位長度后,得到新的拋物線的解析式是y=ax2+bx+c,以下四個結(jié)論:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正確的是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點P是x軸上的一動點,當PA+PB最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,C,B三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE,BD分別與CD,CE交于點M,N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN,其中正確結(jié)論的個數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學規(guī)定學生的學期體育成績滿分為100分,其中課外體育占20%,期中考試成績占30%,期末考試成績占50%.小彤的三項成績(百分制)次為95,90,88,則小彤這學期的體育成績?yōu)椋?/span> )
A.89
B.90
C.92
D.93
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳環(huán)保,你我同行”.今年合肥市區(qū)的增設(shè)的“小黃車”、“摩拜單車”等公共自行車
給市民出行帶來了極大的方便.圖①是某種公共自行車的實物圖,圖②是該種公共自行車的
車架示意圖,點A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,
座桿CE=15cm,且∠EAB=75°.求點E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com