【題目】如圖,已知∥,,點是射線上一動點(與點不重合),,分別平分和,交射線于點,.
(1)求的度數(shù);
(2)當點運動時,與之間存在怎樣的數(shù)量關系?說明理由;
(3)當點運動到使時,求的度數(shù).
【答案】(1)70°;(2)2:1;(3)35°.
【解析】
(1)根據(jù)平行線的性質以及角平分線的定義,即可得到∠CAD的度數(shù);
(2)根據(jù)平行線的性質以及角平分線的定義,即可得到∠APB:∠ADB=2:1;
(3)根據(jù)平行線的性質以及角平分線的定義,即可得到∠BAC=∠CAP=∠DAP=∠DAM,進而得出∠BAC=∠BAM=35°.
(1)∵AM∥BN,
∴∠MAB=180°-∠A=140°,
又∵AC,AD分別平分∠BAP和∠MAP,
∴∠CAD=∠CAP+∠DAP=(∠BAP+∠MAP)=∠BAM=70°.
(2)∠APB:∠ADB=2:1.
理由如下:∵AM∥BN,
∴∠APB=∠PAM,∠ADB=∠DAM,
又∵AD平分∠PAM,
∴∠ADB=∠DAM=∠PAM=∠APB,
即∠APB:∠ADB=2:1.
(3)∵AM∥BN,
∴∠ACB=∠CAM,
又∵∠ACB=∠BAD,
∴∠CAM=∠BAD,
∴∠BAC=∠DAM,
又∵∠BAC=∠PAC,∠DAM=∠DAP,
∴∠BAC=∠CAP=∠DAP=∠DAM,
∴∠BAC=∠BAM=35°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(4,0),點B(0,6),點P是直線AB上的一個動點,已知點P的坐標為(m,n).
(1)當點P在線段AB上時(不與點A、B重合)
①當m=2,n=3時,求△POA的面積.
②記△POB的面積為S,求S關于m的函數(shù)解析式,并寫出定義域.
(2)如果S△BOP:S△POA=1:2,請直接寫出直線OP的函數(shù)解析式.(本小題只要寫出結果,不需要寫出解題過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=110°,則α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)產(chǎn)品店利用網(wǎng)絡將優(yōu)質土特產(chǎn)銷往全國,其中銷售的核桃和花生這兩種商品的相關信息如下表:
商品 | 核桃 | 花生 |
規(guī)格 | 1 kg/袋 | 2 kg/袋 |
利潤 | 10元/袋 | 8元/袋 |
根據(jù)上表提供的信息,解答下列問題:
(1)已知今年上半年,該店銷售上表規(guī)格的核桃和花生共3000kg,獲得利潤21000元,求上半年該店銷售這種規(guī)格的核桃和花生各多少袋;
(2)根據(jù)之前的銷售情況,估計今年下半年,該店還能銷售上表規(guī)格的核桃和花生共2000kg,其中,核桃的銷售量不低于600kg.假設今年下半年,銷售上表規(guī)格的核桃為(kg),銷售上表規(guī)格的核桃和花生獲得的總利潤為(元),寫出與之間的函數(shù)關系式,并求下半年該店銷售這種規(guī)格的核桃和花生至少獲得的總利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB和AC于點E、F,給出以下五個結論正確的個數(shù)有( 。
①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤當∠EPF在△ABC內(nèi)繞頂點P旋轉時(點E不與A、B重合),S四邊形AEPF=S△ABC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的方程x2-2(m+1)x+m2=0.
(1)當m取何值時,方程有兩個實數(shù)根?
(2)為m選取一個合適的整數(shù),使方程有兩個不相等的實數(shù)根,并求這兩個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com