【題目】已知拋物線的頂點(diǎn)是C(0,a)(a>0,a為常數(shù)),并經(jīng)過點(diǎn)(2a,2a),點(diǎn)D(0,2a)為一定點(diǎn).
(1)求含有常數(shù)a的拋物線的解析式;
(2)設(shè)點(diǎn)P是拋物線上任意一點(diǎn),過P作PH丄x軸.垂足是H,求證:PD=PH;
(3)設(shè)過原點(diǎn)O的直線l與拋物線在笫一象限相交于A、B兩點(diǎn),若DA=2DB.且S△ABD=4 .求a的值.
【答案】
(1)
解:設(shè)拋物線的解析式為y=kx2+a,
∵經(jīng)過點(diǎn)(2a,2a),
4a2k+a=2a,
∴k= ,
則拋物線的解析式為:y= x2+a
(2)
解:連接PD,設(shè)拋物線上一點(diǎn)P(x,y),過P作PH⊥x軸,PG⊥y軸,
在Rt△GDP中,由勾股定理得:PD2=DG2+PG2=(y﹣2a)2+x2=y2﹣4ay+4a2+x2,
∵y= x2+a,
∴x2=4a×(y﹣a)=4ay﹣4a2,
∴PD2=y2﹣4ay+4a2+4ay﹣4a2=y2=PH2,
∴PD=PH
(3)
解:過B作BE⊥x,AF⊥x,
由(2)的結(jié)論:BE=DB,AF=DA,
∵DA=2DB,
∴AF=2BE,
∴AO=2OB,
∴B是OA的中點(diǎn),
∵C是OD的中點(diǎn),
連接BC,∴BC= = =BE=DB,
過B作BR⊥y軸,
∵BR⊥CD,
∴CR=DR,OR=a+ = ,
∴ = x2+a,
∴x2=2a2,
∵x>0,
∴x= a,
∴B( a, ),AO=2OB,
∴S△OBD=S△ABD=4 ,
∴ ×2a× a=4 ,
∴a2=4,
∵a>0,
∴a=2
【解析】(1)根據(jù)拋物線的圖象假設(shè)出解析式為y=kx2+a,將經(jīng)過點(diǎn)(2a,2a),代入求出即可;(2)根據(jù)勾股定理得出PD2=DG2+PG2 , 進(jìn)而求出PD=PH;(3)利用(2)中結(jié)論得出BE=DB,AF=DA,即可得出B是OA的中點(diǎn),進(jìn)而得出S△OBD=S△ABD=4 ,即可得出a的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F.
(1)求證:BE=DF;
(2)若 M、N分別為邊AD、BC上的點(diǎn),且DM=BN,試判斷四邊形MENF的形狀(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了直觀地表示我國體育健兒在最近八屆夏季奧運(yùn)會上獲得獎牌總數(shù)的變化趨勢,最適合使用的統(tǒng)計(jì)圖是( 。
A.扇形圖B.折線圖C.條形圖D.直方圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為(x).即當(dāng)n為非負(fù)整數(shù)時(shí),若n-≤x<n+,則(x)=n.如(0.46)=0,(3.67)=4.
給出下列關(guān)于(x)的結(jié)論:
①(1.493)=1;
②(2x)=2(x);
③若(x-1)=4,則實(shí)數(shù)x的取值范圍是9≤x<11;
④當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有(m+2 017x)=m+(2 017x);
⑤(x+y)=(x)+(y).
其中,正確的結(jié)論有________(填寫所有正確的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小高從家騎自行車去學(xué)校上學(xué),先走上坡路到達(dá)點(diǎn)A,再走下坡路到達(dá)點(diǎn)B,最后走平路到達(dá)學(xué)校,所用的時(shí)間與路程的關(guān)系如圖所示.放學(xué)后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學(xué)時(shí)一致,那么他從學(xué)校到家需要的時(shí)間是( )
A.14分鐘
B.17分鐘
C.18分鐘
D.20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點(diǎn)落在D點(diǎn)的位置,且AD交y軸于點(diǎn)E.那么點(diǎn)D的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn),且規(guī)定:正方形內(nèi)部 不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于 x 軸的正方形:邊長為 1 的正方形內(nèi)部有 1 個(gè)整點(diǎn),邊長為 2 的正方形內(nèi)部有 1 個(gè)整點(diǎn),邊長為 3 的正方形內(nèi)部 有 9 個(gè)整點(diǎn),…,則邊長為 10 的正方形內(nèi)的整點(diǎn)個(gè)數(shù)為( )
A. 64 個(gè) B. 100 個(gè) C. 81 個(gè) D. 121 個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com