分析 首先由Rt△ABC中,∠ACB=90°,AC=15,BC=20,利用勾股定理即可求得AB的長(zhǎng),然后由題意易得△ECF是等腰直角三角形,然后由三角形的面積公式,求得CE的長(zhǎng),繼而求得DF的長(zhǎng),再利用勾股定理求得答案.
解答 解:根據(jù)折疊的性質(zhì)可知:CD=AC=15,B′C=BC=20,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,
∴B′D=20-15=5,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FD=90°,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴AC•BC=AB•CE,
∵根據(jù)勾股定理求得AB=25,
∴CE=12,
∴EF=12,ED=AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=9,
∴DF=EF-ED=3,
∴B′F=$\sqrt{B′{D}^{2}-D{F}^{2}}$=4.
故答案為:4.
點(diǎn)評(píng) 此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理的應(yīng)用等,根據(jù)折疊的性質(zhì)求得相等的角是本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行四邊形 | B. | 等腰梯形 | C. | 等邊三角形 | D. | 圓 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-2x+2 | B. | y=2x-2 | C. | y=-x-2 | D. | y=-2x-2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com