某果園有100棵橘子樹,平均每一棵樹結600個橘子.根據(jù)經驗估計,每多種一棵樹,平均每棵樹就會少結5個橘子.設果園增種x棵橘子樹,果園橘子總個數(shù)為y個,則果園里增種      棵橘子樹,橘子總個數(shù)最多.
10.

試題分析:假設果園增種x棵橘子樹,那么果園共有(x+100)棵橘子樹,∵每多種一棵樹,平均每棵樹就會少結5個橘子,∴這時平均每棵樹就會少結5x個橘子,則平均每棵樹結(600﹣5x)個橘子.∵果園橘子的總產量為y,∴則,∴當棵時,橘子總個數(shù)最多.故答案為:10.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

沙坪壩火車站將改造成一個集高鐵、輕軌、公交、停車場、商業(yè)于一體的地下七層建筑,地面上欲建造一個圓形噴水池,如圖,點表示噴水池的水面中心,表示噴水柱子,水流從點噴出,按如圖所示的直角坐標系,每一股水流在空中的路線可以用來描述,那么水池的半徑至少要          米,才能使噴出的水流不致落到池外。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC的三個頂點坐標分別為A(-4,0),B(1,0),C(-2,6).

(1)求經過點A,B,C三點的拋物線解析式.
(2)設直線BC交y軸于點E,連結AE,求證:AE=CE;
(3)設拋物線與y軸交于點D,連結AD交BC于點F,求證:以A,B,F(xiàn)為頂點的三角形與△ABC相似,并求:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線L與拋物線交于A、C兩點,其中C點的橫坐標為2.

(1)求拋物線的解析式及直線AC的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上, C、D兩點不重合,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是(    )


A.                  B.                  C.                  D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題中是假命題的是(   )
A.若,則.B.
C.若,則.D.若,則

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若將函數(shù)的圖像向右平行移動1個單位,則它與直線的交點坐標是(   )
A.(-3,0)和(5,0)B.(-2,b)和(6,b)
C.(-2,0)和(6,0)D.(-3,b)和(5,b)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖像如圖所示,反比列函數(shù)與正比列函數(shù)在同一坐標系內的大致圖像是(      )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數(shù)根是
A.x1=1,x2=-2B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3

查看答案和解析>>

同步練習冊答案