【題目】如圖,在△ABC中,∠C=90°,AC=3BC=4.0BC邊上一點(diǎn),以0為圓心,OB為半徑作半圓與BC邊和AB邊分別交于點(diǎn)D、點(diǎn)E,連接DE

1)當(dāng)BD=3時(shí),求線段DE的長(zhǎng);

2)過(guò)點(diǎn)E作半圓O的切線,當(dāng)切線與AC邊相交時(shí),設(shè)交點(diǎn)為F.求證:△FAE是等腰三角形.

【答案】1;(2)證明見(jiàn)解析.

【解析】

1)由DB為直徑可以得到∠DEB=C=90°,由此可以證明Rt△DBERt△ABC,把AC,BDAB的值即可求得DE的值;
2)由弦切角定理可得,∠B=FED,再由等角的余角相等知,∠A=FEA,故AF=EF

解:(1)因?yàn)?/span>BD是直徑

所以角DEB是直角

所以

2)證法一:連接OE
EF為半圓O的切線,
∴∠DEO+DEF=90°,
∴∠AEF=DEO,
∵△DBE∽△ABC,
∴∠A=EDB,
又∵∠EDO=DEO,
∴∠AEF=A
∴△FAE是等腰三角形;
證法二:連接OE
EF為切線,
∴∠AEF+OEB=90°,
∵∠C=90°,
∴∠A+B=90°,
OE=OB,
∴∠OEB=B,
∴∠AEF=A
∴△FAE是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2),B(3,4),C(1,6)

1)畫出△ABC,并求出BC所在直線的解析式;

2)畫出△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,于點(diǎn),,為了研究圖中線段之間的關(guān)系,設(shè),

1)可通過(guò)證明,得到關(guān)于的函數(shù)表達(dá)式__________,其中自變量的取值范圍是___________;

2)根據(jù)圖中給出的(1)中函數(shù)圖象上的點(diǎn),畫出該函數(shù)的圖象;

3)借助函數(shù)圖象,回答下列問(wèn)題:①的最小值是__________;②已知當(dāng)時(shí),的形狀與大小唯一確定,借助函數(shù)圖象給出的一個(gè)估計(jì)值(精確到0.1)或者借助計(jì)算給出的精確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為美化小區(qū)環(huán)境,物業(yè)計(jì)劃安排甲、乙兩個(gè)工程隊(duì)完成小區(qū)綠化工作.已知甲工程隊(duì)每天綠化面積是乙工程隊(duì)每天綠化面積的2倍,甲工程隊(duì)單獨(dú)完成600m2的綠化面積比乙工程隊(duì)單獨(dú)完成600m2的綠化面積少用2天.

1)求甲、乙兩工程隊(duì)每天綠化的面積分別是多少m2;

2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊(duì)每天綠化費(fèi)為0.3萬(wàn)元,付給乙工程隊(duì)每天綠化費(fèi)為 0.2萬(wàn)元,若要使這次的綠化總費(fèi)用不超過(guò)10萬(wàn)元,則至少應(yīng)安排甲工程隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A、B兩點(diǎn).

1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.

2)求△AOB的面積.

3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人同時(shí)登山,甲乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲登山的速度是   米/分鐘,乙在A地提速時(shí)距地面的高度b為   米.

(2)若乙提速后,乙的速度是甲登山速度的3倍,請(qǐng)求出乙提速后y和x之間的函數(shù)關(guān)系式.

(3)登山多長(zhǎng)時(shí)間時(shí),乙追上了甲,此時(shí)乙距A地的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為4,點(diǎn)、分別在上,,相交于點(diǎn),點(diǎn)的中點(diǎn),連接,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E作直線lBC

(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若∠ABC的平分線BFAD于點(diǎn)F,求證:BEEF;

(3)(2)的條件下,若DE4,DF3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),的三個(gè)頂點(diǎn)的分別為,(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

1)在網(wǎng)格內(nèi)畫出向下平移2個(gè)單位長(zhǎng)度得到的,點(diǎn)的坐標(biāo)是________;

2)以點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點(diǎn)的坐標(biāo)是________;

3的面積是________平方單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案