【題目】在我市美化工程招標時,有甲、乙兩個工程隊投標.經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

【答案】(190天;(2)甲、乙合作

【解析】試題分析:(1)設(shè)乙隊單獨完成這項工程需x天,總工作量為單位1,根據(jù)題意可得,甲隊做44天,乙隊做24天可完成任務(wù),列方程求解;

(2)分別求出甲乙單獨和甲乙合作所需要的錢數(shù),然后比較大小.

試題解析:(1)設(shè)乙隊單獨完成這項工程需x天,根據(jù)題意得,

,

解得,x=90,

經(jīng)檢驗,x=90是原方程的根.

答:乙隊單獨完成這項工程需90天;

(2)由甲隊獨做需:3.5×60=210(萬元);

乙隊獨做工期超過70天,不符合要求;

甲乙兩隊合作需1÷( )=36天,

需要:36×(3.5+2)=198(萬元),

答:由甲乙兩隊全程合作最省錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新化縣城區(qū)2015年平均房價為每平方米2500元,連續(xù)兩年增長后,2017年平均房價達到每平方米3500元,設(shè)這兩年平均房價年平均增長率為x,根據(jù)題意,下面所列方程正確的是(  )

A. 3500(1+x)2=2500 B. 3500(1﹣x)2=2500 C. 2500(1﹣x)2=3500 D. 2500(1+x)2=3500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在15°,65°,75°,135°的角中,能用一副三角尺畫出來的角度有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周長為偶數(shù),則EF的取值為(
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示下列各數(shù):

(1)3 600;(2)-100 000;

(3)-24 000;(4)380.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】民諺有云:不到廬山辜負目,不食螃蟹辜負腹.,又到了食蟹的好季節(jié)啦!某經(jīng)銷商去水產(chǎn)批發(fā)市場采購太湖蟹,他看中了AB兩家的某種品質(zhì)相近的太湖蟹.零售價都為60/千克,批發(fā)價各不相同.

A家規(guī)定:批發(fā)數(shù)量不超過100千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量超過100千克但不超過200千克,按零售價的90%優(yōu)惠;超過200千克的按零售價的88%優(yōu)惠.

B家的規(guī)定如下表:

1)如果他批發(fā)90千克太湖蟹,則他在A家批發(fā)需要  元,在B家批發(fā)需要  元;

2)如果他批發(fā)x千克太湖蟹150x200),則他在A家批發(fā)需要  元,在B家批發(fā)需要   元(用含x的代數(shù)式表示);

3)現(xiàn)在他要批發(fā)170千克太湖蟹,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要使一個菱形ABCD成為正方形,則需增加的條件是 _________ .(填一個正確的條件即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形的兩邊長為712,且第三邊的長為整數(shù),這樣的三角形的周長的最大值是(

A.25B.27C.28D.37

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a,b互為相反數(shù),則下面四個等式中一定成立的是( 。

A. a+b=0 B. a+b=1 C. |a|+|b|=0 D. |a|+b=0

查看答案和解析>>

同步練習(xí)冊答案