【題目】如圖,正比例函數(shù)ykx的圖象經(jīng)過點A,點A在第二象限.過點AAHx軸,垂足為H.已知點A的橫坐標(biāo)為﹣3,且AOH的面積為4.5

1)求該正比例函數(shù)的解析式.

2)將正比例函數(shù)ykx向下平移,使其恰好經(jīng)過點H,求平移后的函數(shù)解析式.

【答案】1y=﹣x;(2y=﹣x3

【解析】

1)根據(jù)點A的橫坐標(biāo)和△AOH的面積,即可求出A點縱坐標(biāo),然后將A點坐標(biāo)代入解析式中即可求出正比例函數(shù)的解析式;

2)根據(jù)平移規(guī)律即可求出平移后的函數(shù)解析式

1)∵點A的橫坐標(biāo)為﹣3,且△AOH的面積為4.5

AH=4.5×2÷OH=9÷3=3

∴點A的縱坐標(biāo)為3,點A的坐標(biāo)為(﹣3,3),

∵正比例函數(shù)ykx經(jīng)過點A,

∴﹣3k3解得k=﹣1

∴正比例函數(shù)的解析式是y=﹣x;

2)∵AH3

∴將正比例函數(shù)y=﹣x向下平移3個單位后經(jīng)過點H,

∴平移后的函數(shù)解析式為y=﹣x3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點CDBABC的平行線,兩線交于點E,且DEAC于點O,連接AE

1)求證:四邊形ADCE是菱形;

2)若∠B=60°BC=6,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,直線l1:yx5x軸,y軸分別交于A.B兩點.直線l2:y4xbl1交于點 D(3,8)且與x軸,y軸分別交于C、E.

(1)求出點A坐標(biāo),直線l2的解析式;

(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點QC出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標(biāo);

(3)如圖3,平面直角坐標(biāo)系中有一點G(m,2),使得SCEGSCEB,求點G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解九(1)班學(xué)生的體溫情況,對這個班所有學(xué)生測量了一次體溫(單位:℃),小明將測量結(jié)果繪制成如下統(tǒng)計表和如圖所示的扇形統(tǒng)計圖.下列說法錯誤的是(

體溫(℃)

36.1

36.2

36.3

36.4

36.5

36.6

人數(shù)(人)

4

8

8

10

x

2

A.這些體溫的眾數(shù)是8

B.這些體溫的中位數(shù)是36.35

C.這個班有40名學(xué)生

D.x=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù) y-2x+4,完成下列問題:

1)在所給直角坐標(biāo)系中畫出此函數(shù)的圖象;

2)根據(jù)圖象回答:當(dāng) x 時,y2.

3)求出函數(shù)圖象與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在半圓O中,AB為直徑,P為弧AB的中點,分別在弧AP和弧PB上取中點A1和B1,再在弧PA1和弧PB1上分別取中點A2和B2,若一直這樣取中點,求∠AnPBn=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC,BC.

(1試判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水池的容積為90m3,水池中已有水10m3,現(xiàn)按8m3/h的流量向水池注水.

(1)寫出水池中水的體積y(m3)與進(jìn)水時間t(h)之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍;

(2)當(dāng)t=1時,求y的值;當(dāng)V=50時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形的邊長為,過邊上一點于點,延長線上一點,取,連接,交,則的長為______.

查看答案和解析>>

同步練習(xí)冊答案