【題目】如圖,過點(diǎn)A(2,0)的兩條直線l1,l2分別交y軸于點(diǎn)B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=

(1)求點(diǎn)B的坐標(biāo);

(2)若△ABC的面積為4,求直線l2的解析式.

【答案】(1)點(diǎn)B的坐標(biāo)為(0,3);(2)l2的解析式為y=x-1.

【解析】(1)先根據(jù)勾股定理求得BO的長,再寫出點(diǎn)B的坐標(biāo);(2)先根據(jù)△ABC的面積4,求得CO的長,再根據(jù)點(diǎn)A、C的坐標(biāo)運(yùn)用待定系數(shù)法求得直線l2的解析式.

解:(1)∵點(diǎn)A(2,0),AB=

∴BO==3

∴點(diǎn)B的坐標(biāo)為(0,3);

(2)∵△ABC的面積為4 ∴×BC×AO=4 ∴×BC×2=4,即BC=4

∵BO=3 ∴CO=4﹣3=1 ∴C(0,﹣1)

設(shè)l2的解析式為y=kx+b,則,解得

l2的解析式為y=x﹣1.

“點(diǎn)睛”本題主要考查了兩條直線的交點(diǎn)問題,解題的關(guān)鍵是掌握勾股定理以及待定系數(shù)法.注意:兩條直線的交點(diǎn)坐標(biāo),就是由這兩條直線相對(duì)應(yīng)的一次函數(shù)的表達(dá)式所組成二元一次過程組的解,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABBCCDBC,垂足分別為BC,AB=BC,EBC的中點(diǎn),AEBDF,CD=4cm,AB的長度為( 。

A. 4cm B. 8cm C. 9cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD,點(diǎn)M,N分別在直線ABCD,點(diǎn)E為平面內(nèi)一點(diǎn).

(1)如圖1,BMEE,END的數(shù)量關(guān)系為 (直接寫出答案);

(2)如圖2,BME,EF平分∠MEN,NP平分∠END,EQNP求∠FEQ的度數(shù)(用用含m的式子表示)

(3)如圖3,點(diǎn)GCD上一點(diǎn),BMNEMN,GEKGEM,EHMNAB于點(diǎn)H,探究∠GEKBMN,GEH之間的數(shù)量關(guān)系(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)在x軸下方的拋物線上是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生上學(xué)期參加社區(qū)活動(dòng)的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動(dòng)的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

參加社區(qū)活動(dòng)次數(shù)的頻數(shù)、頻率分布表

根據(jù)以上圖表信息,解答下列問題:

1)表中a= ,b=

2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));

3)若該校共有1200名學(xué)生,請(qǐng)估計(jì)該校在上學(xué)期參加社區(qū)活動(dòng)超過6次的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=90°,C,D的三等分點(diǎn),AB分別交OC,OD于點(diǎn)E,F.試找出圖中相等的線段(半徑除外).

(1)錯(cuò)因: .

(2)糾錯(cuò):____________________________________________________________

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)a=﹣2時(shí),求a22a+1)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a(x2)2+3的圖象經(jīng)過點(diǎn)(1,0).

(1)求這個(gè)二次函數(shù)的解析式;

(2)分別指出這個(gè)二次函數(shù)圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo).

(3) 寫出把此拋物線向右平移1個(gè)單位長度,再向上平移2個(gè)單位長度后的拋物線解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,點(diǎn)為邊上一點(diǎn), ,且,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接,又邊上的高為.

(1)判斷直線是否平行?并說明理由;

(2)證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案