【題目】如圖,四邊形ABCD中,ACBD是對(duì)角線,△ABC是等邊三角形.線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CE,連接AE

1)求證:AEBD

2)若∠ADC30°,AD3BD4.求CD的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

(1)根據(jù)AC=BC、∠DCE+ACD=ACB+ACD、CE=CD證△ACE≌△BCD即可;

(2)連接DE,可得△DCE是等邊三角形,即∠CDE=60°、DC=DE,繼而在RtADE中,由勾股定理可得DE的長(zhǎng),即可求得CD

(1)∵△ABC是等邊三角形,

AC=BC,∠ACB=60°,

由旋轉(zhuǎn)的性質(zhì)可得:

CE=CD,∠DCE=60°,

∴∠DCE+ACD=∠ACB+ACD,

即∠ACE=∠BCD

在△ACE和△BCD中,

,

∴△ACE≌△BCD(SAS)

AE=BD;

(2)連接DE

CD=CE,∠DCE=60°,

∴△DCE是等邊三角形.

∴∠CDE=60°,DC=DE

∵∠ADC=30°,

∴∠ADC+CDE=90°.

AD=3,BD=4

AE=BD=4

RtADE中,由勾股定理,

可得

DC=DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,MOA的中點(diǎn),弦CDAB于點(diǎn)M,過(guò)點(diǎn)DDECACA的延長(zhǎng)線于點(diǎn)E

(1)連接AD,則∠OAD   °;

(2)求證:DE⊙O相切;

(3)點(diǎn)F上,∠CDF45°,DFAB于點(diǎn)N.若DE3,求FN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線與x 軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對(duì)稱(chēng)軸是且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)①直接寫(xiě)出點(diǎn)B的坐標(biāo);②求拋物線解析式.

(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

(3)拋物線上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合,過(guò)點(diǎn) D DEAC,DFAB,分別交 ABAC E、F 兩點(diǎn),下列說(shuō)法正確的是(

A. AD 平分BAC,則四邊形 AEDF 是菱形

B. BDCD,則四邊形 AEDF 是菱形

C. AD 垂直平分 BC則四邊形 AEDF 是矩形

D. ADBC,則四邊形 AEDF 是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線經(jīng)過(guò)點(diǎn).

1)求的值;

2)若,求c的值,

3)在(2)的情況下,求這條拋物線的頂點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富同學(xué)們的知識(shí),拓展閱讀視野,學(xué)習(xí)圖書(shū)館購(gòu)買(mǎi)了一些科技、文學(xué)、歷史等書(shū)籍,進(jìn)行組合搭配成、三種套型書(shū)籍,發(fā)放給各班級(jí)的圖書(shū)角供同學(xué)們閱讀,已知各套型的規(guī)格與價(jià)格如下表:

套型

套型

套型

規(guī)格(本/套)

12

9

7

價(jià)格(元/套)

200

150

120

1)已知搭配、兩種套型書(shū)籍共15套,需購(gòu)買(mǎi)書(shū)籍的花費(fèi)是2120元,問(wèn)、兩種套型各多少套?

2)若圖書(shū)館用來(lái)搭配的書(shū)籍共有2100本,現(xiàn)將其搭配成、兩種套型書(shū)籍,這兩種套型的總價(jià)為30750元,求搭配后剩余多少本書(shū)?

3)若圖書(shū)館用來(lái)搭配的書(shū)籍共有122本,現(xiàn)將其搭配成、、三種套型書(shū)籍共13套,且沒(méi)有剩余,請(qǐng)求出所有搭配的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P是以C為圓心,1為半徑的⊙C上的一個(gè)動(dòng)點(diǎn),已知A(﹣1,0),B1,0),連接PA,PB,則PA2+PB2的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】社會(huì)主義核心價(jià)值觀是社會(huì)主義核心價(jià)值體系最核心的體現(xiàn),踐行社會(huì)主義和興價(jià)值觀也是每一名中學(xué)生的責(zé)任.某校開(kāi)展了社會(huì)主義核心價(jià)值觀演講比賽,學(xué)習(xí)在演講比賽活動(dòng)中,對(duì)全校學(xué)生用A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)分,現(xiàn)從中隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,繪制出了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中的信息回答下列問(wèn)題:

1)共抽取了多少名學(xué)生進(jìn)行調(diào)查?

2)將圖甲中的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)求出圖乙中B等級(jí)所占圓心角的度數(shù);

4)某班有男、女各2名學(xué)生報(bào)名參加演講比賽,若該班班主任從中選2名學(xué)生最終參加校級(jí)比賽,試用列表或畫(huà)樹(shù)狀圖的方法,求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a,c滿足,2a+cac+20,二次函數(shù)y=ax2+bx+9a經(jīng)過(guò)點(diǎn)B(4,n)、A(2n),且當(dāng)1x2時(shí),y=ax2+bx+9a的最大值與最小值之差是9,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案