在平面直角坐標(biāo)系中,一螞蟻從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷移動,每次移動1個單位.其行走路線如圖所示.

(1)填寫下列各點的坐標(biāo):
A1(______,______),
A3(______,______),
A12(______,______);
(2)寫出點A4n的坐標(biāo)(n是正整數(shù));
(3)指出螞蟻從點A100到A101的移動方向.
【答案】分析:(1)在平面直角坐標(biāo)系中可以直接找出答案;
(2)根據(jù)求出的各點坐標(biāo),得出規(guī)律;
(3)點A100中的n正好是4的倍數(shù),根據(jù)第二問的答案可以分別得出點A100和A101的坐標(biāo),所以可以得到螞蟻從點A100到A101的移動方向.
解答:解:(1)A1(0,1),A3(1,0),A12(6,0);
(2)A4n(2n,0);
(3)點A100中的n正好是4的倍數(shù),所以點A100和A101的坐標(biāo)分別是A100(50,0)A101的(50,1),所以螞蟻從點A100到A101的移動方向是從下向上.
點評:本題主要考查的是在平面直角坐標(biāo)系中確定點的坐標(biāo)和點的坐標(biāo)的規(guī)律性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案