【題目】若有理數(shù) ab 滿足,則a____, b____

【答案】m-2,n+2)或(m-6,n-5

【解析】

根據(jù)等式分兩種情況討論即可;

①分A點(diǎn)平移到y(tǒng)軸上、B點(diǎn)平移到x軸上和A點(diǎn)平移到x軸上、B點(diǎn)平移到y(tǒng)軸上兩種情況討論即可.

②根據(jù)CDAB,得到B=∠DCE,∠A+∠ADC=,再根據(jù)CF平分∠DCE,DG平分∠ADC,得到∠DCF=∠B,∠CDG=,又因?yàn)?/span>D、G、F在同一條直線上,所以∠CDG=∠F+∠DCF,最后根據(jù)∠A+∠B=3∠F即可求解.

解:∵

當(dāng)=

當(dāng)

①第一種情況:AB先向左平移2個單位,再向上平移2個單位.

則平移后點(diǎn) P 的坐標(biāo)為(m-2n+2

第二種情況:AB先向下平移5個單位,再向左平移6個單位.

則平移后點(diǎn) P 的坐標(biāo)為(m-6,n-5).

②∵CDAB

∴∠B=∠DCE,∠A+∠ADC=

∵CF平分∠DCE,DG平分∠ADC

∴∠DCF=∠B,∠CDG=

∵F在GD的延長線上

∴D、G、F在同一條直線上

∴∠CDG是的外角

∠CDG=∠F+∠DCF

∵∠A+∠B=3∠F

∠F=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.

(2)在圖2扇形統(tǒng)計(jì)圖中,m的值為   ,表示“D等級”的扇形的圓心角為   度;

(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計(jì)分.
A.如圖,DE為△ABC的中位線,點(diǎn)F為DE上一點(diǎn),且∠AFB=90°,若AB=8,BC=10,則EF的長為
B.小智同學(xué)在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?4.8(不考慮身高因素),則大雁塔市約為米.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn) Aa+b,2-a)與點(diǎn)Ba-5,b-2a)關(guān)于y軸對稱.

1)求A、B兩點(diǎn)的坐標(biāo);

2)如果點(diǎn)B關(guān)于x軸的對稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、BC,并求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時針旋轉(zhuǎn)30°后得到矩形GBEF,延長DA交FG于點(diǎn)H,則GH的長為( )

A.8﹣4
B. ﹣4
C.3 ﹣4
D.6﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 CDAB,EFAB,垂足分別為DF,∠B+BDG180°, 試說明∠BEF=∠CDG.將下面的解答過程補(bǔ)充完整,并填空(填寫理由依據(jù)或數(shù)學(xué)式, 將答案按序號填在答題卷的對應(yīng)位置內(nèi))

證明:∵CDAB,EFAB

∴∠BFE=∠BDC90°

EFCD

∴∠BEF

又∵∠B+BDG180°

BCDG

∴∠CDG

∴∠CDG=∠BEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E,F(xiàn),則線段B′F的長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,CDAB邊上的高,AC=4,BC=3,DB=

求:(1)求AD的長;

(2)△ABC是直角三角形嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案