如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則AD長為( ◆ )
A.8B.5C.D.
D
解:連接OD.
∵AB是⊙O的直徑,
∴∠ACB=∠ADB=90°(直徑所對的圓周角是直角);
又∵∠ACB的平分線交⊙O于D,
∴D點(diǎn)為半圓AB的中點(diǎn),
∴△ABD為等腰直角三角形,
∴AD=AB÷ = cm.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O的直徑為5,在圓O上位于直徑AB的異側(cè)有定點(diǎn)C和動點(diǎn)P,已知BC:CA=4: 3,點(diǎn)P在半圓弧AB上運(yùn)動(不與A、B兩點(diǎn)重合),過點(diǎn)C作CP的垂線CD交PB的延長線于D點(diǎn).

(1)求證:AC·CD=PC·BC;
(2)當(dāng)點(diǎn)P運(yùn)動到AB弧中點(diǎn)時,求CD的長;
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PCD的面積最大?并求出這個最大面積S。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以直角坐標(biāo)系的原點(diǎn)O作⊙O,點(diǎn)M、N是⊙O上的兩點(diǎn),M(-1,2),N(2,1)
小題1:試在x軸上找出點(diǎn)P使PM+PN最小,求出P的坐標(biāo);
小題2:若在坐標(biāo)系中另有一直線AB,A(10,0),點(diǎn)B在y軸上,∠BAO=30°,⊙O以0. 2個單位/秒的速度沿x軸正方向運(yùn)動,問圓在運(yùn)動過程中與該直線相交的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=8cm,BC=4cm,點(diǎn)Q由C向D運(yùn)動,速度為1cm/s,點(diǎn)P沿折線A,B,C,D由A向D運(yùn)動,速度為2cm/s,兩點(diǎn)同時出發(fā),當(dāng)一個點(diǎn)到達(dá)點(diǎn)D時,即都停止運(yùn)動,則當(dāng)運(yùn)動時間t=______時,半徑均為2cm的⊙Q與⊙P相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以O(shè)為圓心的兩個同心圓中,半徑分別為3和5,若大圓的弦AB與小圓相交,則弦AB的長的取值范圍是(  )
A.8≤AB≤10B.8<AB<10
C.8<AB≤10D.6≤AB≤10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)邊長為2a的正方形的中心A在直線l上,它的一組對邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運(yùn)動,點(diǎn)A,O之間的距離為d。

小題1:如圖1,當(dāng)r<a時,根據(jù)d與a,r之間關(guān)系,請你將⊙O與正方形的公共點(diǎn)個數(shù)填入下表:
d,a,r之間的關(guān)系
公共點(diǎn)的個數(shù)
d>a+r
0
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 
 
小題2:如圖2,當(dāng)r=a時,根據(jù)d與a,r之間關(guān)系,請你寫出⊙O與正方形的公共點(diǎn)個數(shù),即當(dāng)r=a時,⊙O與正方形的公共點(diǎn)個數(shù)可能有         個。

小題3:如圖3,當(dāng)⊙O與正方形的公共點(diǎn)個數(shù)有5個時,r=      (請用a的代數(shù)式表示r,不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題背景:
如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為的圓孔,需對鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);

探究發(fā)現(xiàn):
小題1:如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是 _______,給出證明,并通過計(jì)算說明此時鐵片都能穿過圓孔;

拓展遷移:
小題2:如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形 鐵片切割成兩個全等的直角梯形鐵片;
 
①當(dāng)BE=DF=時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,的直徑,弦于點(diǎn)連結(jié)的周長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個結(jié)論中正確的結(jié)論有(    )個
①EF是△ABC的中位線.
②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
③設(shè)OD=m,AE+AF=2n,則SAEF=mn;


(A)1個       (B)2個      (C)3個     (D)4個

查看答案和解析>>

同步練習(xí)冊答案