【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請(qǐng)完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
【答案】見(jiàn)解析.
【解析】分析:此題主要利用對(duì)頂角相等,得出∠2=∠3,∠1=∠4,然后等量代換得出∠3=∠4;根據(jù)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,得出BD∥CE,再根據(jù)平行線(xiàn)的性質(zhì):兩直線(xiàn)平行,同位角相等,得出∠C=∠ABD,然后證出∠D=∠ABD,進(jìn)而證得DF∥AC.
詳解:∵∠1=∠2,( 已知 )
又∵∠2=∠3 ,∠1=∠4( 對(duì)頂角相等 )
∴∠3=∠4( 等量代換 )
∴_____BD___∥__CE_____( 內(nèi)錯(cuò)角相等,兩直線(xiàn)平行 )
∴∠C=∠ABD( 兩直線(xiàn)平行,同位角相等 )
∵∠C=∠D(已知 )
∴∠D=∠ABD(等量代換 )
∴DF∥AC( 內(nèi)錯(cuò)角相等,兩直線(xiàn)平行 )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD為菱形,BD為對(duì)角線(xiàn),在對(duì)角線(xiàn)BD上任取一點(diǎn)E,連接CE,把線(xiàn)段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線(xiàn)段CF,使得∠ECF=∠BCD ,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接DF.
(1)如圖1,求證:BE=DF;
(2)如圖2,若DF=CF=10, ∠DFC=2∠BDC,求菱形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、D、C、F在一條直線(xiàn)上,且BD=FC,AB=EF.
(1)請(qǐng)你只添加一個(gè)條件(不再加輔助線(xiàn)),使△ABC≌△EFD,你添加的條件是 ;
(2)添加了條件后,證明△ABC≌△EFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過(guò)平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。
(1)請(qǐng)?jiān)趫D中作出△A′B′C′;(2)寫(xiě)出點(diǎn)A′、B′、C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿(mǎn)足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過(guò)C點(diǎn),M為EF的中點(diǎn),則下列結(jié)論正確的是
A. 當(dāng)x=3時(shí),EC<EM B. 當(dāng)y=9時(shí),EC>EM
C. 當(dāng)x增大時(shí),EC·CF的值增大。 D. 當(dāng)y增大時(shí),BE·DF的值不變。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:
解:將方程②變形為4x+10y+y=5,即2(2x+5y)+y=5,③
把方程①代入③得2×3+y=5,∴y=-1,
把y=-1代入①得x=4,
∴方程組的解為.
請(qǐng)你解決以下問(wèn)題:
(1)模仿小軍的“整體代換”法解方程組
(2)已知x,y滿(mǎn)足方程組 求整式x2+4y2+xy的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間(單位:小時(shí)),將學(xué)生分成五類(lèi): 類(lèi)( ),類(lèi)(),類(lèi)(),類(lèi)(),類(lèi)(),繪制成尚不完整的條形統(tǒng)計(jì)圖如圖11.
根據(jù)以上信息,解答下列問(wèn)題:
(1) 類(lèi)學(xué)生有 人,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)類(lèi)學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;
(3)從該班做義工時(shí)間在的學(xué)生中任選2人,求這2人做義工時(shí)間都在 中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當(dāng)x=0時(shí),y=﹣5;當(dāng)x=2時(shí),y=﹣7.
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)y=5時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用我們學(xué)過(guò)的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱(chēng)性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美.
(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com