【題目】如圖,點E是正方形ABCD內(nèi)的一點,點BC邊的下方,連接AE,BE,CE,,,,且,則 ______

【答案】135

【解析】

先由全等三角形的性質(zhì)證明EBE是等腰直角直角三角形,進而得出BEE′=∠BEE=45°,由勾股定理求出EE2的值,再勾股定理的逆定理證得EEC是直角三角形,從而∠EEC=90°,即可得出答案.

連接EE′.

∵△ABE≌△CBE′,

∴∠ABE=∠CBE′,

四邊形ABCD是正方形,

∴∠ABC=90°,

∴∠EBE′=90°,

∴△EBE是直角三角形,

∵△ABE≌△CBE′,

BE=BE′=2,∠AEB=∠BEC,

∴∠BEE′=∠BEE=45°,

EE2=22+22=8,AE=CE′=1,EC=3,

EC2=EC2+EE2,

∴△EEC是直角三角形,

∴∠EEC=90°,

∴∠AEB=135°,

故答案為:135.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負,單位:km):

①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?

③若該出租車的計價標(biāo)準(zhǔn)為:行駛路程不超過3km收費10元,超過3km的部分按每千米加1.8元收費,在這過程中該駕駛員共收到車費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°FAB延長線上一點,點EBC上,且AE=CF

1)求證:ABE≌△CBF;

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,厘米,厘米,點DAB的中點如果點P在線段BC上以v厘米秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動若點Q的運動速度為3厘米秒,則當(dāng)全等時,v的值為  

A. B. 3 C. 3 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生體質(zhì),某中學(xué)在體育課中加強了學(xué)生的長跑訓(xùn)練.在一次女子800米耐力測試中,小靜和小茜在校園內(nèi)200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第( 。┟

A. 80 B. 105 C. 120 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角尺的直角頂點重合在一起.

(1)若 OB ∠DOC 的角平分線,求∠AOD 的補角的度數(shù)是多少?

(2)若 ∠COB ∠DOA 的比是 2:7,求 ∠BOC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,ABCG交于點下列結(jié)論:;其中正確的有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動點(不與端點A,B重合),作CD⊥OB于點D,若點C,D都在雙曲線y= 上(k>0,x>0),則k的值為(  )

A.25
B.18
C.9
D.9

查看答案和解析>>

同步練習(xí)冊答案