如圖所示,菱形ABCD的對角線相交于點(diǎn)O,AE∥BD,BE∥AC,AE,BE相交于點(diǎn)E,那么四邊形OAEB是矩形嗎?說明理由.

解:四邊形OAEB是矩形.
理由:∵AE∥BO,BE∥AO,
∴四邊形OAEB是平行四邊形,
又∵四邊形ABCD是菱形,
∴AC⊥DB.
∴∠AOB=90°,
∴平行四邊形OAEB是矩形.
分析:首先判定四邊形OAEB是平行四邊形,再由菱形的性質(zhì)得出∠AOB=90°,從而判定四邊形OAEB是矩形.
點(diǎn)評:此題綜合考查了菱形的性質(zhì)與矩形的判定方法.矩形的判定定理有:
(1)有一個角是直角的平行四邊形是矩形;
(2)有三個角是直角的四邊形是矩形;
(3)對角線互相平分且相等的四邊形是矩形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖所示,在△ABC中,AD⊥BC于點(diǎn)D,E,F(xiàn)分別是AB,AC邊的中點(diǎn),連接DE,EF,F(xiàn)D,當(dāng)△ABC滿足條件
AB=AC(或∠B=∠C,或BD=DC)
時,四邊形AEDF是菱形.(填一個你認(rèn)為恰當(dāng)?shù)臈l件即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖所示,以△ABC的三邊為邊,分別作三個等邊三角形.
(1)求證四邊形ADEF是平行四邊形;
(2)△ABC滿足什么條件時,四邊形ADEF是菱形是矩形?
(3)這樣的平行四邊形ADEF是否總是存在?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在△ABC中,D、E、F分別是AB、BC、AC邊上的中點(diǎn).
(1)求證:四邊形ADEF是平行四邊形.
(2)若AB=AC,求證:四邊形ADEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

49、如圖所示,在△ABC中,AB=AC,P為BC的中點(diǎn),PE⊥AB于E,PF⊥AC于F,EM⊥AC于M,F(xiàn)N⊥AB于N,EM與FN相交于點(diǎn)Q,那么四邊形PEQF是菱形嗎?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖所示,Rt△ABC中,∠BAC=Rt∠,AD⊥BC于點(diǎn)D,∠ABC的平分線交AD于O,交AC于E,OG∥AC交BC于G.
(1)求證:∠1=∠2.
(2)求證:△BAO≌△BGO.
(3)求證:四邊形AOGE是菱形.

查看答案和解析>>

同步練習(xí)冊答案