已知拋物線y=ax2經(jīng)過點(1,5),當y=15時,求x的值.
把(1,5)代入y=ax2得a=5,
所以拋物線的解析式為y=5x2,
當y=15時,5x2=15,
解得x=±
3
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫,斜坡可以用一次函數(shù)y=
1
2
x
刻畫.
(1)求小球到達的最高點的坐標;
(2)小球的落點是A,求點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-3x-4的圖象交x軸于A、B兩點.
(1)若點P在線段AB上運動,作PQ⊥x軸,交拋物線于點Q,求PQ的最大值;
(2)已知點D(5,6)在拋物線上,若點M在線段AD上運動,作MN⊥x軸,交拋物線于點N,求MN的最大值;
(3)在(2)的運動過程中,求△ADN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,對稱軸為x=3的拋物線y=ax2+2x與x軸相交于點B,O.
(1)求拋物線的解析式,并求出頂點A的坐標;
(2)連接AB,把AB所在的直線平移,使它經(jīng)過原點O,得到直線l.點P是l上一動點.設(shè)以點A、B、O、P為頂點的四邊形面積為S,點P的橫坐標為t,當0<S≤18時,求t的取值范圍;
(3)在(2)的條件下,當t取最大值時,拋物線上是否存在點Q,使△OPQ為直角三角形且OP為直角邊?若存在,直接寫出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(0,-3),且頂點坐標為(-1,-4).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+mx-2m2(m≠0).
(1)求證:該拋物線與x軸有兩個不同的交點;
(2)過點P(0,n)作y軸的垂線交該拋物線于點A和點B(點A在點P的左邊),是否存在實數(shù)m、n,使得AP=2PB?若存在,則求出m、n滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是( 。
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

2011年長江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購買抗旱設(shè)備的補貼辦法,其中購買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
型 號
金 額
投資金額x(萬元)
Ⅰ型設(shè)備Ⅱ型設(shè)備
x5x24
補貼金額y(萬元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元購買,請你設(shè)計一個能獲得最大補貼金額的方案,并求出按此方案能獲得的最大補貼金額.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,關(guān)于x的二次函數(shù)y=x2-2mx-m-2的圖象與x軸交于A(x1,0)、B(x2,0)兩點(x1<0<x2),與y軸交于C點
(1)當m為何值時,AC=BC;
(2)當∠BAC=∠BCO時,求這個二次函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案