【題目】 甲、乙兩名車工都加工要求尺寸是直徑10毫米的零件.從他們所生產(chǎn)的零件中,各取5件,測得直徑如下(單位:毫米)
甲:10.05, 10.02,9.97,9.95,10.01
乙:9.99,10.02,10.02,9.98,10.01
分別計算兩組數(shù)據(jù)的標準差(精確到0.01),說明在尺寸符合規(guī)格方面,誰做得較好?
【答案】甲組標準差0.04>乙組標準差0.02,乙組做得較好
【解析】本題考查的是標準差的計算,計算標準差需要先算出方差,計算方差的步驟是:①計算數(shù)據(jù)的平均數(shù) ;②計算偏差,即每個數(shù)據(jù)與平均數(shù)的差;③計算偏差的平方和;④偏差的平方和除以數(shù)據(jù)個數(shù).標準差即方差的算術平方根;注意標準差和方差一樣都是非負數(shù).
解:甲組的平均數(shù) =(10.05+ 10.02+9.97+9.95+10.01)=10
甲組的方差= s2=[(10.05-10)2+(10.02-10)2+(9.97-10)2+(9.95-10)2+(10.01-10)2]=0.00128
甲組標準差0.04
乙組的平均數(shù) =(9.99+10.02+10.02+9.98+10.01)=10.004
乙組的方差= s2=[(9.99-10.004)2+(10.02-10.004)2+(10.02-10.004)2+(9.98-10.004)2+(10.01-10.004)2]=0.00026
乙組的標準差0.02
∵甲組標準差0.04>乙組標準差0.02
∴乙組做得較好
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S3.若S2=48,S3=9,則S1的值為( 。
A. 18 B. 12 C. 9 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某無人機于空中A處探測到目標B,D,從無人機A上看目標B,D的俯角分別為30°,60°,此時無人機的飛行高度AC為60m,隨后無人機從A處繼續(xù)飛行30 m到達A′處,
(1)求A,B之間的距離;
(2)求從無人機A′上看目標D的俯角的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為△ABD的外接圓上的一動點(點C不在 上,且不與點B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證: AC=BC+CD;
(3)若△ABC關于直線AB的對稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等,==,利用上述結論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵=∴b====3.
理解應用:
如圖,甲船以每小時30海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.
(1)判斷△A1A2B2的形狀,并給出證明
(2)求乙船每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】試找出如圖所示的每個正多邊形的對稱軸的條數(shù),并填入表格中.
正多邊形的邊數(shù) | 3 | 4 | 5 | 6 | 7 | 8 |
對稱軸的條數(shù) |
根據(jù)上表,請就一個正n邊形對稱軸的條數(shù)作一猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件: , 使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設甲與A地相距y甲(km),乙與A地相距y乙(km),甲離開A地時間為x(h),y甲、y乙與x之間的函數(shù)圖象如圖所示.
(1)甲的速度是 km/h.
(2)請分別求出y甲、y乙與x之間的函數(shù)關系式.
(3)當乙與A地相距240km時,甲與B地相距多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com