【題目】如圖,以矩形OCPD的頂點(diǎn)O為原點(diǎn),它的兩條邊所在的直線分別為x軸和y軸建立直角坐標(biāo)系.以點(diǎn)P為圓心,PC為半徑的⊙P與x軸的正半軸交于A、B兩點(diǎn).若拋物線y=ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn),且AB=6.
(1)求⊙P的半徑R的長(zhǎng);
(2)求該拋物線的解析式;
(3)求出該拋物線與⊙P的第四個(gè)交點(diǎn)E的坐標(biāo).
【答案】
(1)解:如圖1中,連接PA.
∵PD⊥AB,
∴AD=DB= AB=3,
∵拋物線y=ax2+bx+4與y軸交于點(diǎn)C,
∴C(0,4),
∴OC=4,
∵四邊形PDOC是矩形,
∴PD=OC=3,∠PDA=90°,
∴PC=PA= = =5,
∴R=5
(2)解:由(1)可知A(,2,0),B(8,0),
把A、B兩點(diǎn)坐標(biāo)代入y=ax2+bx+4得到, ,
解得 ,
∴拋物線的解析式為y= x2﹣ x+4
(3)解:如圖2中,
根據(jù)對(duì)稱性,點(diǎn)C、點(diǎn)E關(guān)于對(duì)稱軸x=5對(duì)稱,
∵點(diǎn)C(0,4)
∴點(diǎn)E坐標(biāo)(10,4)
【解析】(1)根據(jù)垂徑定理可得AD=DB=3,在Rt△PAD中,根據(jù)PA= 即可解決問(wèn)題.(2)先確定A、B兩點(diǎn)坐標(biāo),再根據(jù)待定系數(shù)法即可解決問(wèn)題.(3)根據(jù)對(duì)稱性即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十六屆亞遠(yuǎn)會(huì)共頒發(fā)金牌477枚,如圖是不完整的金牌數(shù)條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,
根據(jù)以上信息.觶答下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)中國(guó)體育健兒在第十六屆亞運(yùn)會(huì)上共奪得金牌枚;
(3)在扇形統(tǒng)計(jì)圖中,日本代表團(tuán)所對(duì)應(yīng)的扇形的圓心角約為°(精確到1°).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.
(1)求過(guò)O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)正方形ABCD頂點(diǎn)B,C的⊙O與AD相切于點(diǎn)P,與AB,CD分別相交于點(diǎn)E,F(xiàn),連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你會(huì)求的值嗎?這個(gè)問(wèn)題看上去很復(fù)雜,我們可以先考慮簡(jiǎn)單的情況,通過(guò)計(jì)算,探索規(guī)律:
(1)由上面的規(guī)律我們可以大膽猜想,得到
=________________
利用上面的結(jié)論,求:
(2)的值。
(3)求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)分別是正方形ABCD的邊CD、AD上的點(diǎn).且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四邊形DEOF中,錯(cuò)誤的有 . (只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1, ).
(1)求點(diǎn)P,Q的坐標(biāo);
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com