【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)△EFD≌△GFB.
(2)試判斷四邊形FBGD的形狀,并說明理由.
(3)當(dāng)△ABC滿足條件時(shí),四邊形FBGD是正方形(不用說明理由).

【答案】
(1)解:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

在△EFD和△GFB中,

,

∴△EFD≌△GFB


(2)解:四邊形EBGD是菱形.

理由:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

在△EFD和△GFB中,

∴△EFD≌△GFB,

∴ED=BG,

∴BE=ED=DG=GB,

∴四邊形EBGD是菱形


(3)∠ABC=90°
【解析】解:(3)當(dāng)△ABC是直角三角形,即∠ABC=90°時(shí),四邊形FBGD是正方形,根據(jù)有一個(gè)角是直角的菱形是正方形可以得出.

所以答案是:∠ABC=90°.

【考點(diǎn)精析】利用菱形的性質(zhì)和正方形的判定方法對題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等;先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線m與直線n相交于點(diǎn)OA、B兩點(diǎn)同時(shí)從點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長度沿直線n向左運(yùn)動,點(diǎn)B以每秒y個(gè)單位長度沿直線m向上運(yùn)動。

(1)若運(yùn)動1s時(shí),點(diǎn)B比點(diǎn)A多運(yùn)動1個(gè)單位;運(yùn)動2s時(shí),點(diǎn)B與點(diǎn)A運(yùn)動的路程和為6個(gè)單位,則x=_________,y=___________.

(2)如圖,當(dāng)直線m與直線n垂直時(shí),設(shè)∠BAO和∠ABO的角平分線相交于點(diǎn)P.在點(diǎn)A、B在運(yùn)動的過程中,∠APB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值(寫出主要過程);若發(fā)生變化,請說明理由.

(3)如圖,將(2)中的直線n不動,直線m繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)α(0<ɑ<90),其他條件不變.)用含有α的式子表示∠APB的度數(shù)____________.

)如果再分別作ABO的兩個(gè)外角∠BAC,∠ABD的角平分線相交于點(diǎn)Q,并延長BPQA交于點(diǎn)M.則下列結(jié)論正確的是___________(填序號) .

APB與∠Q互補(bǔ);②∠Q與∠M互余;③∠APB-∠M為定值;④∠M-∠Q為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題

為了保護(hù)環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有AB兩種型號,其中每臺的價(jià)格,年省油量如下表:

A

B

價(jià)格(萬元/臺)

a

b

節(jié)省的油量(萬升/年)

2.4

2

經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab;

2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題 ——
(1)用配方法解一元二次方程:2x2﹣4x﹣5=0.
(2)化簡: ÷(x+2﹣ ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船沿正南方向以33海里/時(shí)的速度勻速航行,在m處觀測到燈塔p在西偏南69°方向下,航行2小時(shí)后到達(dá)n處,觀測燈塔p在西偏南57°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,求此時(shí)輪船離燈塔的距離約為多少海里?(結(jié)果精確到整數(shù),參考數(shù)據(jù):tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn)BC=EC,CF⊥BEAB于點(diǎn)F,PEB延長線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,把直角三角形的直角頂點(diǎn)放在直線上,射線平分.

1)如圖,若,求的度數(shù).

2)若,則的度數(shù)為 .

3)由(1)和(2),我們發(fā)現(xiàn)之間有什么樣的數(shù)量關(guān)系?

4)若將三角形繞點(diǎn)旋轉(zhuǎn)到如圖所示的位置,試問之間的數(shù)量關(guān)系是否發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著幾何部分的學(xué)習(xí),小鵬對幾何產(chǎn)生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個(gè),以O為圓心任意長為半徑畫弧分別交OAOB于點(diǎn)C和點(diǎn)D,將一副三角板如圖所示擺放,兩個(gè)直角三角板的直角頂點(diǎn)分別落在點(diǎn)C和點(diǎn)D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點(diǎn)P,連接小鵬通過觀察和推理,得出結(jié)論:OP平分

你同意小鵬的觀點(diǎn)嗎?如果你同意小鵬的觀點(diǎn),試結(jié)合題意寫出已知和求證,并證明.

已知:中,____________,____________,____________

求證:OP平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C滿足二次函數(shù)y=ax2+bx的表達(dá)式,則對該二次函數(shù)的系數(shù)a和b判斷正確的是( )

A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0

查看答案和解析>>

同步練習(xí)冊答案