【題目】按照如下步驟計算:62÷( + ).
(1)計算:( + )÷62
(2)根據(jù)兩個算式的關(guān)系,直接寫出62÷( + )的結(jié)果.

【答案】
(1)解:原式=( + )×36=9+3﹣14﹣1=﹣3;
(2)解:根據(jù)(1)得:原式=﹣
【解析】(1)原式利用負(fù)整數(shù)指數(shù)冪及除法法則變形,再利用乘法分配律計算即可得到結(jié)果;(2)根據(jù)(1)的結(jié)果,利用倒數(shù)的性質(zhì)求出所求式子的值即可.
【考點精析】掌握整數(shù)指數(shù)冪的運算性質(zhì)和有理數(shù)的四則混合運算是解答本題的根本,需要知道aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分線.

(1)如圖1,若AD=BD,求∠A的度數(shù);

(2)如圖2,在(1)的條件下,作DE⊥AB于E,連接EC.求證:△EBC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=6,BD=6,EBC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)運用完全平方公式計算:992

(2)先化簡,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中 x=,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.

(1)畫出四邊形 ABCD 關(guān)于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.

(2)求 A、B′、B、C 四點組成和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線 a,bc 表示三條相互交叉而建的公路,現(xiàn)在要建立一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有兩條公路:一條是全長400千米的普通公路,一條是全長360千米的高速公路.某客車在高速公路上行駛的平均速度比在普通公路上行駛的平均速度快50千米/時,從甲地到乙地由高速公路上行駛所需的時間比普通公路上行駛所需的時間少6小時.求該客車在高速公路上行駛的平均速度.

查看答案和解析>>

同步練習(xí)冊答案