【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
【答案】C
【解析】
全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)定理逐個判斷即可.
A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本選項錯誤;
B、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本選項錯誤;
C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本選項正確;
D、∵OB=OC,
∴∠DBC=∠ACB,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,
∴∠A=∠D,
∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,
∴能推出△ABC≌△DCB,故本選項錯誤;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:把形如ax2+bx+c的二次三項式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2,例如二次三項式x2-2x+9的配方過程如下:x2-2x+9=x2-2x+1-1+9=(x-1)2+8.
請根據(jù)閱讀材料解決下列問題:
(1)比照上面的例子,將下面的兩個二次三項式分別配方:
①x2-4x+1=______;
②3x2+6x-9=3(x2+2x)-9=______;
(2)已知x2+y2-6x+10y+34=0,求3x-2y的值;
(3)已知a2+b2+c2+ab-3b+2c+4=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某種窗戶由上下兩部分組成,其上部是用木條圍成的半圓形,且半圓內(nèi)部用了三根等長的木條分隔,下部是用木條圍成的邊長相同的四個小正方形,木條寬厚不計,已知下部的小正方形的邊長為a米.
(1)用含a的式子分別表示窗戶的面積和木條用料(實線部分)的總長;
(2)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,木條每米20元,求制作這扇窗戶需要多少元?(π取3,結果精確到個位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上A,B兩點對應的數(shù)分別為a和b,且a,b滿足等式,p為數(shù)軸上一動點,對應的數(shù)為x.
______,______,線段______.
數(shù)軸上是否存在點p,使?若存在,求出x的值;若不存在,請說明理由.
在的條件下,若M,N分別是線段AB,PB的中點,試求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結論中正確有( 。﹤.(1)DC=BE,(2)∠BOD=60°,(3)∠BDO=∠CEO,(4)AO平分∠DOE,(5)AO平分∠BAC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC周長為1,連接△ABC三邊中點構成第二個三角形,再連接第二個三角形三邊中點構成第三個三角形,以此類推,第2 016個三角形的周長為( )
A. 22 016 B. 22 017 C. ()2 016 D. ()2 015
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一數(shù)值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結果是12,第2次輸出的結果是6,第3次輸出的結果是 ,依次繼續(xù)下去…,第2013次輸出的結果是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com