(2005•河南)如圖,半徑為4的兩等圓相外切,它們的一條外公切線與兩圓圍成的陰影部分中,存在的最大圓的半徑等于   
【答案】分析:首先從圓心向公切線作垂線,然后利用矩形正方形的性質(zhì)和勾股定理即可計(jì)算.
解答:解:如圖,設(shè)小圓半徑為R,分別從圓心向公切線作垂線,
由切線的性質(zhì)知,四邊形ABFS,CDFE是矩形,
AS=BF=4,CD=EF=R,
四邊形HBFD是正方形,DF=BF=4,
∴BE=4-R,
由勾股定理知,BC2=CE2+BE2,
即(4+R)2=42+(4-R)2
∴R=1.
點(diǎn)評(píng):本題利用了切線的概念,矩形,正方形折性質(zhì),勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•河南)如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫結(jié)果,不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金華市東陽市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

(2005•河南)如圖,梯形ABCD中,AD∥BC,AB=DC,P為梯形ABCD外一點(diǎn),PA、PD分別交線段BC于點(diǎn)E、F,且PA=PD.
(1)寫出圖中三對(duì)你認(rèn)為全等的三角形(不再添加輔助線);
(2)選擇你在(1)中寫出的全等三角形中的任意一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2005•河南)如圖,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到△A′B′C′,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )

A.(-3,-2)
B.(2,2)
C.(3,0)
D.(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•河南)如圖1,Rt△ABC中,∠C=90°,AC=12,BC=5,點(diǎn)M在邊AB上,且AM=6.
(1)動(dòng)點(diǎn)D在邊AC上運(yùn)動(dòng),且與點(diǎn)A,C均不重合,設(shè)CD=x.
①設(shè)△ABC與△ADM的面積之比為y,求y與x之間的函數(shù)關(guān)系式(寫出自變量的取值范圍);
②當(dāng)x取何值時(shí),△ADM是等腰三角形?寫出你的理由.
(2)如圖2,以圖1中的為一組鄰邊的矩形中,動(dòng)點(diǎn)在矩形邊上運(yùn)動(dòng)一周,能使是M為頂角的等腰三角形共有多少個(gè)?(直接寫結(jié)果,不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年河南省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•河南)如圖,tanα等于( )

A.
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案