(2012•營(yíng)口)如圖,在等腰梯形ABCD中,AD∥BC,過(guò)點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長(zhǎng)為
5
5
分析:過(guò)A作AE⊥BC于E,得出四邊形AEFD是平行四邊形,得出AE=DF,AD=EF=2,證△AEB和△DFC全等得出BE=CF,求出CF=1,在Rt△DFC中,根據(jù)勾股定理求出即可.
解答:解:過(guò)A作AE⊥BC于E,

∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°,AE∥DF,
∵AD∥BC,
∴四邊形AEFD是平行四邊形,
∴AE=DF,AD=EF,
∵四邊形ABCD是等腰梯形,AD∥BC,
∴∠B=∠C,
在△AEB和△DFC中
∠B=∠C
∠AEB=∠DFC
AB=CD
,
∴△AEB≌△DFC,
∴CF=BE,
∵EF=AD=2,BC=4,
∴BE=CF=1,
在Rt△DFC中,由勾股定理得:CD=
DF2+CF2
=
22+12
=
5

故答案為:
5
點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),勾股定理,平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,解此題的關(guān)鍵是把等腰梯形轉(zhuǎn)化成直角三角形和平行四邊形,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,菱形ABCD的邊長(zhǎng)為2,∠B=30°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B-C-D的路線向點(diǎn)D運(yùn)動(dòng).設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時(shí),△ABP的面積可以看做0),點(diǎn)P運(yùn)動(dòng)的路程為x,則y與x之間函數(shù)關(guān)系的圖象大致為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,-1)、B(-1,1)、C(0,-2).
(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為
(1,-1)
(1,-1)
;
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過(guò)點(diǎn)B1的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,實(shí)線部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.
(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,直線y=-
43
x+8
分別交x軸、y軸于A、B兩點(diǎn),線段AB的垂直平分線分別交x軸、y軸于C、D兩點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案