【題目】如圖,ABCDBEDF,∠DBE和∠CDF的角平分線交于點(diǎn)G.當(dāng)∠BGD65°時(shí),∠BDC________.

【答案】50

【解析】

根據(jù)兩直線平行同旁內(nèi)角互補(bǔ),得出∠EBD+BDF=180°,由角平分線性質(zhì)得出2GBD+2CDG+BDC=180°,由三角形內(nèi)角和得出∠GBD+GDB=115°,可得∠2GBD+2CDG+2BDC=230°,結(jié)合兩式可得出∠BDC的度數(shù)..

解:∵BEDF,

∴∠EBD+BDF=180°,

∴∠EBD+CDF+BDC=180°,

BG、DG是∠DBE和∠CDF的角平分線,

∴∠EBD=2GBD, CDF=2CDG,

2GBD+2CDG+BDC=180°,

∵∠BGD=65°,

∴∠GBD+GDB=115°,

∴∠GBD+CDG+BDC=115°,

∴∠2GBD+2CDG+2BDC=230°,

∴∠BDC=50°.

故答案為:50.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,將ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DEAB于點(diǎn)F,當(dāng)DEB是直角三角形時(shí),DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了對(duì)一棵傾斜的古杉樹(shù)AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度,如圖,在地面上選取一點(diǎn)C,測(cè)得∠ACB=45,AC=24 m,∠BAC=66.5,求這棵古杉樹(shù)AB的長(zhǎng)度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin66.5≈0.92,cos66.5≈0.40,tan66.5≈2.30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC,分別以BC,AB,AC為邊作等邊三角形BCE,ACF,ABD

(1)若存在四邊形ADEF,判斷它的形狀,并說(shuō)明理由.

(2)存在四邊形ADEF的條件下,請(qǐng)你給△ABC添個(gè)條件,使得四邊形ADEF成為矩形,并說(shuō)明理由.

(3)當(dāng)△ABC滿足什么條件時(shí)四邊形ADEF不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形紙片ABCD中,AB=mAD=n,將兩張邊長(zhǎng)分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長(zhǎng)方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF=___,BF=____;(用含m的式子表示)
2)請(qǐng)用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請(qǐng)問(wèn)S2-S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列各式:

=-1;

;

.

1)根據(jù)前面各式的規(guī)律可得:

.

.

2)請(qǐng)用上面的結(jié)論進(jìn)行計(jì)算:

(答案可含有冪的形式表示);

②若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、C在線段AD的異側(cè),點(diǎn)EF分別是線段AB、CD上的點(diǎn).已知∠AEG=∠AGE,∠DCG=∠DGC.

(1) 求證:ABCD

(2) 若∠AGE+∠AHF180°,且∠BFC30°2C,求∠B的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,AB=AC,過(guò)AB上一點(diǎn)D作DE∥AC交BC于點(diǎn)E,以E為頂點(diǎn),ED為一邊,作∠DEF=∠A,另一邊EF交AC于點(diǎn)F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),判斷ADEF的形狀;

(3)延長(zhǎng)圖①中的DE到點(diǎn)G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案