拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則△ABC的面積為             
6

試題分析:拋物線與x軸交于點(diǎn)A、B,令,變形為,因式分解為,解得x=1,x=-3,所以A、B兩點(diǎn)的橫坐標(biāo)為-3,1;拋物線與y軸交于點(diǎn)C,令x="0," ,所以C點(diǎn)的縱坐標(biāo)為3;△ABC的面積==6
點(diǎn)評:本題考查拋物線,解答本題需要掌握求拋物線與坐標(biāo)軸交點(diǎn)的方法,并知道這些交點(diǎn)構(gòu)成的三角形的面積跟點(diǎn)的坐標(biāo)的關(guān)系
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點(diǎn)M是線段AB上一動點(diǎn)(不與點(diǎn)A、B重合),以M為頂點(diǎn)的拋物線y=(x﹣m)2+n與線段OA交于點(diǎn)C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動點(diǎn),過點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.

(1)求拋物線的解析式.
(2)當(dāng)DE=4時,求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司在固定線路上運(yùn)輸,擬用運(yùn)營指數(shù)Q量化考核司機(jī)的工作業(yè)績.Q =" W" + 100,而W的大小與運(yùn)輸次數(shù)n及平均速度x(km/h)有關(guān)(不考慮其他因素),W由兩部分的和組成:一部分與x的平方成正比,另一部分與x的n倍成正比.試行中得到了表中的數(shù)據(jù).
次數(shù)n
2
1
速度x
40
60
指數(shù)Q
420
100
(1)用含x和n的式子表示Q;
(2)當(dāng)x = 70,Q = 450時,求n的值;
(3)若n = 3,要使Q最大,確定x的值;
(4)設(shè)n = 2,x = 40,能否在n增加m%(m>0)同時x減少m%的情況下,而Q的值仍為420,若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為4,對稱中心為點(diǎn)P,點(diǎn)F為BC邊上一個動點(diǎn),點(diǎn)E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對稱,設(shè)它們的面積和為S1

(1)求證:∠APE=∠CFP;
(2)設(shè)四邊形CMPF的面積為S2,CF=x,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當(dāng)圖中兩塊陰影部分圖形關(guān)于點(diǎn)P成中心對稱時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線)與y軸交于點(diǎn)A,其對稱軸與x軸交于點(diǎn)B。

(1)求點(diǎn)A,B的坐標(biāo);
(2)設(shè)直線l與直線AB關(guān)于該拋物線的對稱軸對稱,求直線l的解析式;
(3)若該拋物線在這一段位于直線l的上方,并且在這一段位于直線AB的下方,求該拋物線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:直線軸于點(diǎn),交軸于點(diǎn),拋物線經(jīng)過、、(1,0)三點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)的坐標(biāo)為(-1,0),在直線上有一點(diǎn),使相似,求出點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在軸下方的拋物線上,是否存在點(diǎn),使的面積等于四邊形的面積?如果存在,請求出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在二次函數(shù)的圖像中,若的增大而增大,則的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案