【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標有1,2,5,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關于x的分式方程=3x+的解為整數(shù)的概率是( )
A.B.C.D.
【答案】B
【解析】
求出使得一次函數(shù)y=(-m+1)x+11-m經(jīng)過一、二、四象限且關于x的分式方程=3x+的解為整數(shù)的數(shù),然后直接利用概率公式求解即可求得答案.
解:∵一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合條件的有:2,5,7,8,
把分式方程=3x+去分母,整理得:3x2﹣16x﹣mx=0,
解得:x=0,或x=,
∵x≠8,
∴≠8,
∴m≠8,
∵分式方程=3x+的解為整數(shù),
∴m=2,5,
∴使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關于x的分式方程=3x+的解為整數(shù)的整數(shù)有2,5,
∴使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關于x的分式方程=3x+的解為整數(shù)的概率為=;
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點C恰落在雙曲線y=(x>0)上,此時□OABC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司經(jīng)銷的一種產(chǎn)品每件成本為40元,要求在90天內(nèi)完成銷售任務.已知該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任務完成后,統(tǒng)計發(fā)現(xiàn)銷售員小王90天內(nèi)日銷售量p(件)與時間(第x天)滿足一次函數(shù)關系p=﹣2x+200.設小王第x天銷售利潤為W元.
(1)直接寫出W與x之間的函數(shù)關系式,井注明自變量x的取值范圍;
(2)求小生第幾天的銷售量最大?最大利潤是多少?
(3)任務完成后,統(tǒng)計發(fā)現(xiàn)平均每個銷售員每天銷售利潤為4800公司制定如下獎勵制度:如果一個銷售員某天的銷售利潤超過該平均值,則該銷售員當天可獲得200元獎金.請計算小王一共可獲得多少元獎金?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)△ABC和△CDE是兩個等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開始繞點C逆時針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點F,與AB交于點G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當以點B、D、E為頂點的三角形是直角三角形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點P是AB邊上的動點,過點P作⊙O的一條切線PC(點C為切點),則線段PC長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】受“新冠”疫情影響,全國中小學延遲開學,很多學校都開展起了“線上教學”,市場上對手寫板的需求激增.重慶某廠家準備3月份緊急生產(chǎn)A,B兩種型號的手寫板,若生產(chǎn)20個A型號和30個B型號手寫板,共需要投入36000元;若生產(chǎn)30個A型號和20個B型號手寫板,共需要投入34000元.
(1)請問生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本?
(2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設生產(chǎn)了A型號手寫板a個,求w關于a的函數(shù)關系式;
(3)在(2)的條件下,若要求生產(chǎn)A型號手寫板的數(shù)量不能少于B型號手寫板數(shù)量的2倍,請你設計出總獲利最大的生產(chǎn)方案,并求出最大總獲利.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,弦,連接、;
(1)如圖1,求證:;
(2)如圖2,在線段上取點,連接并延長交于點,交于點,,連接、、,,求的正切值;
(3)如圖3,在(2)的條件下,交于點,,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AD是△ABC的中線P是線段AD上的一點(不與點A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點,AD與EF交于點M;
(1)如圖1,當AB=AC時,求證:四邊形EGHF是矩形;
(2)如圖2,當點P與點M重合時,在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com