已知正方形紙片ABCD.如圖1,將正方形紙片折疊,使頂點(diǎn)A落在邊CD上的點(diǎn)P處(點(diǎn)PC、D不重合),折痕為EF,折疊后AB邊落在PQ的位置,PQBC交于點(diǎn)G

【小題1】(1)請(qǐng)你找到一個(gè)與相似的三角形,并證明你的結(jié)論;
【小題2】(2)當(dāng)AB=2,點(diǎn)P位于CD中點(diǎn)時(shí),請(qǐng)借助圖2畫(huà)出折疊后的示意圖,并求CG的長(zhǎng).


【小題1】解:(1)與相似的三角形是(或△FQG).   ……… 1分
證明:∵四邊形ABCD是正方形,
∴∠A=B=C=D=90°.      ………………………………  2分
由折疊知 ∠EPQ=A=90°.
∴∠1+∠3=90°,∠1+∠2=90°.
∴∠2=∠3.    ………………………………………………………  3分

【小題2】(2)正確畫(huà)出示意圖.    …………………………………………  4分
∵四邊形ABCD是正方形,AB=2,
AB=BC=CD=DA=2.
設(shè)AE=x,則ED=2-x,EP= x
PCD的中點(diǎn),
DP=PC=1.
在Rt△EDP中,∠D=90°,根據(jù)勾股定理,得
x2=(2-x2+1.
解得x=
ED=    …………………………………………  5分
,


∴ CG=.   

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•路南區(qū)一模)已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點(diǎn)D,BD=CD,點(diǎn)M在BA的延長(zhǎng)線上.實(shí)施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過(guò)點(diǎn)C作CE⊥AN,垂足為點(diǎn)E.
(1)請(qǐng)用尺規(guī),在圖中畫(huà)出折線AN;(保留作圖痕跡)
(2)將圖形補(bǔ)全,求證:四邊形ADCE為矩形;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法
①如圖1,扇形OAB的圓心角∠AOB=90°,OA=6,點(diǎn)C是
AB
上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥OA于D,作CE⊥OB于E,連接DE,點(diǎn)G在線段DE上,且DG=
1
3
DE
,連接CG.當(dāng)點(diǎn)C在
AB
上運(yùn)動(dòng)時(shí),在CD、CG、DG中,長(zhǎng)度不變的是DG;
②如圖2,正方形紙片ABCD的邊長(zhǎng)為8,⊙O的半徑為2,圓心O在正方形的中心上,將紙片按圖示方式折疊,折疊后點(diǎn)A于點(diǎn)H重合,且EH切⊙O于點(diǎn)H,延長(zhǎng)FH交CD邊于點(diǎn)G,則HG的長(zhǎng)為
19
3
;
③已知Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,則其內(nèi)心和外心之間的距離是
5
cm

其中正確的有
①②
①②
 (請(qǐng)寫(xiě)序號(hào),少選,錯(cuò)選均不得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC紙片上可按如圖所示方式剪出一正方體表面展開(kāi)圖,直角三角形的兩直角邊與正方體展開(kāi)圖左下角正方形的邊共線,斜邊恰好經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn).已知BC=24cm,則這個(gè)展開(kāi)圖可折成的正方體的體積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,將等腰直角三角形紙片ABC沿底邊上的高CD剪開(kāi),得到兩個(gè)全等的三角形△ADC,△BDC,已知AC=4.
(1)求AB的長(zhǎng);
(2)將△ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)得到△A′DC′,DC′交BC于點(diǎn)E(如圖2).設(shè)旋轉(zhuǎn)角為β(0°<β<90°).當(dāng)△DBE為等腰三角形時(shí),求β的值.
(3)若將△DBC沿BA方向平移得到△D′B′C′(如圖3),C′D′與AC交于點(diǎn)F,B′C′與DC交于點(diǎn)H.四邊形DD′FH能否為正方形?若能,求平移的距離是多少;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省景德鎮(zhèn)市八年級(jí)下學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖,在Rt△ABC紙片上可按如圖所示方式剪出一正方體表面展開(kāi)圖,直角三角形的兩直角邊與正方體展開(kāi)圖左下角正方形的邊共線,斜邊恰好經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn)。已知BC=24cm,則這個(gè)展開(kāi)圖可折成的正方體的體積為(   ) 

A.64cm3B.27cm3C.9cm3D.8cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案