【題目】如圖1,在ABC中,∠ACB =90°,∠CAB= 30°,ABD是等邊三角形. 如圖2,將四邊形ACBD折疊,使DC重合,EF為折痕,則∠ACE的正弦值為(

A.B.C.D.

【答案】D

【解析】

RtABC中,設(shè)AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得ABAC的值,由折疊的性質(zhì)知:DE=CE,可設(shè)出DECE的長,然后表示出AE的長,進(jìn)而可在RtAEC中,由勾股定理求得AE、CE的值,即可求∠ACE的正弦值.

解:∵△ABC中,∠ACB=90°,∠BAC=30°,設(shè)AB=2a,

AC=a,BC=a;

∵△ABD是等邊三角形,

AD=AB=2a;

設(shè)DE=EC=x,則AE=2a-x

RtAEC中,由勾股定理,得:(2a-x2+3a2=x2,

解得x=;

AE=,EC=

sinACE=

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC中,∠C>B.

(1)尺規(guī)作圖:作∠ACM=B,且使CM與邊AB交于點(diǎn)D(保留作圖痕跡,不寫作法和證明);

(2)(1)中所形成的圖形中,若AD=2,BD=4,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校七年級共有500名學(xué)生,為了解該年級學(xué)生的課外閱讀情況,將從中隨機(jī)抽取的40名學(xué)生一個學(xué)期的閱讀量(閱讀書籍的本數(shù))作為樣本,根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計圖:

等級

閱讀量()

頻數(shù)

頻率

E

x≤2

4

0.1

D

2<x≤4

12

0.3

C

4<x≤6

a

0.35

B

6<x≤8

c

b

A

x>8

4

0.1

根據(jù)上面提供的信息,回答下列問題:

(1)統(tǒng)計表中的 , ;并補(bǔ)全條形統(tǒng)計圖;

(2)根據(jù)抽樣調(diào)查結(jié)果,請估計該校七年級學(xué)生一學(xué)期的閱讀量為的有多少人?

(3)樣本中閱讀量為4名學(xué)生中有2名男生和2名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)參加區(qū)里舉行的語文學(xué)科素養(yǎng)展示活動,請用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口A在觀測站 O的正東方向,OA4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá) B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船與觀測站之間的距離(即OB的長)為 _____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 為矩形.

(1)如圖1ECD上一定點(diǎn),在AD上找一點(diǎn)F,使得矩形沿著EF折疊后,點(diǎn)D落在 BC邊上(尺規(guī)作圖,保留作圖痕跡);

(2)如圖2,在ADCD邊上分別找點(diǎn)M,N,使得矩形沿著MN折疊后BC的對應(yīng)邊B' C'恰好經(jīng)過點(diǎn)D,且滿足B' C' ⊥BD(尺規(guī)作圖,保留作圖痕跡);

(3)在(2)的條件下,若AB2BC4,則CN .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(-3,0),點(diǎn)N 是點(diǎn)M關(guān)于原點(diǎn)的對稱點(diǎn),點(diǎn)A是函數(shù)y= -x+1 圖象上的一點(diǎn),若AMN是直角三角形,則點(diǎn)A的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快、慢兩車分別從相距千米路程的甲、乙兩地同時出發(fā),勻速行駛.先相向而行,快車到達(dá)乙地后,停留小時,然后按原路原速返回,快車比慢車晚小時到達(dá)甲地,快、慢兩車之間相距的距離(千米)與出發(fā)后所用的時間(小時)的關(guān)系如圖所示,請問:在快車返回途中,快、慢兩車相距路程為千米時,慢車行駛了__________小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線經(jīng)過BC兩點(diǎn).

1)求拋物線的解析式;

2)如圖,點(diǎn)E是直線BC上方拋物線上的一動點(diǎn),當(dāng)面積最大時,請求出點(diǎn)E的坐標(biāo);

3)在(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、AM為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中, ,過點(diǎn)的平行線,交于點(diǎn),交于點(diǎn)

1)求證:的中點(diǎn).

2)已知,是射線上的動點(diǎn).設(shè),

①若四邊形的面積為,求關(guān)于的函數(shù)關(guān)系式;

②在①中,當(dāng)為何值時,的周長最小,并求出此時的值.

查看答案和解析>>

同步練習(xí)冊答案