【題目】在平行四邊形ABCD中,∠A:∠B:∠C=232,則∠D=(  )

A.36°B.108°C.72°D.60°

【答案】B

【解析】

設(shè)每份比為x,根據(jù)內(nèi)角和得到方程,解方程即可得到答案.

ABCD中,∠A:∠B:∠C:∠D=2323,

設(shè)每份比為x,則得到2x+3x+2x+3x=360°,

解得:x=36°

則∠D=108°.

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AB=5cmBC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

1若點P恰好在∠BAC的角平分線上,求t的值;

2)問t為何值時,BCP為等腰三角形?

3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠D+B=60°,則∠C=( 。

A.30°B.90°C.120°D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E

(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;

(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.同組的小穎和小亮隨后想出了相同的方法進行解決:將△ABD沿AD所在的直線對折得到△ADF(如圖2);請證明小敏的發(fā)現(xiàn)的是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx22y軸右側(cè)的部分是_____.(填上升下降

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線過B(﹣2,6),C(2,2)兩點

(1)試求拋物線的解析式;

(2)記拋物線頂點為D,求△BCD的面積;

(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC中,∠ABC=45°,AH⊥BC于點H,點D在AH上,且DH=CH,連結(jié)BD

(1)求證:BD=AC;

(2)將△BHD繞點H旋轉(zhuǎn),得到△EHF(點B,D分別與點E,F(xiàn)對應(yīng)),連接AE

①如圖②,當點F落在AC上時,(F不與C重合),若BC=4,tanC=3,求AE的長;

②如圖③,當△EHF是由△BHD繞點H逆時針旋轉(zhuǎn)30°得到時,設(shè)射線CF與AE相交于點G,連接GH,試探究線段GH與EF之間滿足的等量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗學校九年級一班十名同學定點投籃測試,每人投籃六次,投中的次數(shù)統(tǒng)計如下:5,4,3,5,5,2,5,3,4,1,則這組數(shù)據(jù)的中位數(shù),眾數(shù)分別為(  )
A.4,5
B.5,4
C.4,4
D.5,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)1,3,2,5,2,a的眾數(shù)是a,這組數(shù)據(jù)的中位數(shù)是 ( )
A.3
B.5
C.2
D.1

查看答案和解析>>

同步練習冊答案