【題目】在平行四邊形ABCD中,∠A:∠B:∠C=2:3:2,則∠D=( )
A.36°B.108°C.72°D.60°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)若點P恰好在∠BAC的角平分線上,求t的值;
(2)問t為何值時,△BCP為等腰三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.同組的小穎和小亮隨后想出了相同的方法進行解決:將△ABD沿AD所在的直線對折得到△ADF(如圖2);請證明小敏的發(fā)現(xiàn)的是正確的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,∠ABC=45°,AH⊥BC于點H,點D在AH上,且DH=CH,連結(jié)BD.
(1)求證:BD=AC;
(2)將△BHD繞點H旋轉(zhuǎn),得到△EHF(點B,D分別與點E,F(xiàn)對應(yīng)),連接AE.
①如圖②,當點F落在AC上時,(F不與C重合),若BC=4,tanC=3,求AE的長;
②如圖③,當△EHF是由△BHD繞點H逆時針旋轉(zhuǎn)30°得到時,設(shè)射線CF與AE相交于點G,連接GH,試探究線段GH與EF之間滿足的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗學校九年級一班十名同學定點投籃測試,每人投籃六次,投中的次數(shù)統(tǒng)計如下:5,4,3,5,5,2,5,3,4,1,則這組數(shù)據(jù)的中位數(shù),眾數(shù)分別為( )
A.4,5
B.5,4
C.4,4
D.5,5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)1,3,2,5,2,a的眾數(shù)是a,這組數(shù)據(jù)的中位數(shù)是 ( )
A.3
B.5
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com