【題目】在平面直角坐標(biāo)系中,拋物線yax22ax3x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且過點(diǎn)(2,﹣3a).

1)求拋物線的解析式;

2)拋物線上是否存在一點(diǎn)P,過點(diǎn)PPMBD,垂足為點(diǎn)M,PM2DM?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

3)在(2)的條件下,求△PMD的面積.

【答案】(1)(1,﹣4);(2)存在,(﹣,﹣);(3).

【解析】

1)將點(diǎn)的坐標(biāo)(2,﹣3a)代入拋物線表達(dá)式得:﹣3a4a4a3,即可求解;

2)利用PGM∽△MHD,得2,分別求出線段長度即可求解;

3)利用SPMDM,即可求解.

1)將點(diǎn)的坐標(biāo)(2,﹣3a)代入拋物線表達(dá)式得:﹣3a4a4a3,解得:a1,

故拋物線的表達(dá)式為:yx22x3,

y0,解得:x3或﹣1,

即點(diǎn)A、B的坐標(biāo)分別為(﹣10)、(3,0),

函數(shù)對稱軸為x1,則點(diǎn)D的坐標(biāo)為(1,﹣4);

2)存在.理由:

將點(diǎn)B、D的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b得:

,解得:,

即:直線BD的表達(dá)式為:y2x6

過點(diǎn)MGHy軸,分別過點(diǎn)P、點(diǎn)Dx軸的平行線交于點(diǎn)G、H,

∵∠PMG+DMH90°,∠DMH+MDH90°,

∴∠PMG=∠MDH,

PGM=∠MHD90°,

∴△PGM∽△MHD

2,

設(shè)點(diǎn)MP的橫坐標(biāo)分別為m,n,則其坐標(biāo)分別為(m,2m6)、(n,n22n3),

則:PGmn,MH2m6﹣(﹣4)=2m2

即:mn4m4…①,

GMn22n32m+6n22n2m+3,DHm1,

即:n22n2m+32m2…

①②聯(lián)立并解得:n1或﹣n1不合題意,舍去),

n=﹣,m,點(diǎn)M坐標(biāo)為(,﹣),

故點(diǎn)P的坐標(biāo)為(﹣,﹣);

3)由勾股定理得:

PM,

DM,

SPMDM

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD5,AD、AB、BC分別與O相切于點(diǎn)E、F、G,過點(diǎn)DO的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長為( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求化簡:(a﹣1)÷,并選擇你喜歡的整數(shù)a,b代入求值.

小聰計(jì)算這一題的過程如下:

解:原式=(a﹣1)÷…①

=(a﹣1)…②

…③

當(dāng)a=1,b=1時(shí),原式=…④

以上過程有兩處關(guān)鍵性錯誤,第一次出錯在第_____步(填序號),原因:_____;

還有第_____步出錯(填序號),原因:_____

請你寫出此題的正確解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對角線BD上一動點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線段AF繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到線段AM,連接FM.

(1)求AO的長;

(2)如圖2,當(dāng)點(diǎn)F在線段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線上時(shí),求證:AC=AM;

(3)連接EM,若AEM的面積為40,請直接寫出AFM的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1ax+ba0)的圖象與y軸相交于點(diǎn)A,與反比例函數(shù)y2k0)的圖象相交于點(diǎn)B32)、C(﹣1,n).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)根據(jù)圖象,直接寫出y1y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.

(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)A′B′G′是等邊三角形時(shí),求k的值:

(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°,AB=10,BC=8DE△ABC的中位線.過點(diǎn)D、EDF∥EG,分別交BCF、G,沿DF將△BDF剪下,并順時(shí)針旋轉(zhuǎn)180°與△AMD重疊,沿EG將△CEG剪下,并逆時(shí)針旋轉(zhuǎn)180°與△ANE重疊,則四邊形MFGN周長的最小值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對話,解答問題:

1)分別用ab表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請用樹狀圖法或列表法寫出(ab)的所有取值;

2)求在(ab)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定每位學(xué)生每天參加戶外活動的平均時(shí)間不少于1小時(shí). 為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,

請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

(2)求戶外活動時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)充頻數(shù)分布直方圖;

(3)戶外活動時(shí)間的眾數(shù)和中位數(shù)分別是多少?

(4)若該市共有20000名學(xué)生,大約有多少學(xué)生戶外活動的平均時(shí)間符合要求?

查看答案和解析>>

同步練習(xí)冊答案