【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2x軸的交點B(2,0)

(1)求a、b的值;

(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;

(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當(dāng)△PAC為等腰三角形時,直接寫出t的值.

【答案】1a=;(21n2;(3)滿足條件的時間t1s,2s,或(3+)或(3s

【解析】試題分析:(1)、根據(jù)題意求出點C的坐標(biāo),然后將點C和點B的坐標(biāo)代入直線解析式求出ab的值;(2)、根據(jù)題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進(jìn)行計算,即AC=P1C,P2A=P2CAP3=AC三種情況分別進(jìn)行計算得出t的值.

試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點, C(0,1),

∵點C在直線l2上, ∴b=1, ∴直線l2的解析式為y=ax+1, ∵點B在直線l2上,

2a+1=0, a=

(2)、解:由(1)知,l1的解析式為y=x+1,令y=0, x=﹣1,

由圖象知,點Q在點A,B之間, ∴﹣1<n<2

(3)、解:如圖,

∵△PAC是等腰三角形, ∴x軸正半軸上時,當(dāng)AC=P1C時,

COx軸, ∴OP1=OA=1,BP1=OB﹣OP1=2﹣1=1,1÷1=1s,

當(dāng)P2A=P2C時,易知點P2O重合, ∴BP2=OB=2,2÷1=2s,

Px軸負(fù)半軸時,AP3=AC, A1,0),C0,1), AC=, AP3=

BP3=OB+OA+AP3=3+BP3=OB+OAAP3=3,

3+÷1=3+s,或(3÷1=3 s,

即:滿足條件的時間t1s,2s,或(3+)或(3s

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船早上8時從點A向正北方向出發(fā),小島P在輪船的北偏西15°方向,輪船每小時航行15海里,11時輪船到達(dá)點B處,小島P此時在輪船的北偏西30°方向.

(1)求此時輪船距小島為多少海里?

(2)在小島P的周圍20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會有觸礁危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條射線OMCN,動線段AB的兩個端點AB分別在射線OM、CN上,且∠C =OAB =108°,F點在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請在圖中找出與∠AOC相等的角,并說明理由;

(2)若平移AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,AOB=120°

(1)求tanOAB的值;

(2)求圖中陰影部分的面積S;

(3)在⊙O上一點PA點出發(fā),沿逆時針方向運動一周,回到點A,在點P的運動過程中,滿足SPOA=SAOB時,直接寫出P點所經(jīng)過的弧長(不考慮點P與點B重合的情形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=+bx+c(a0)的頂點為P,其圖象與x軸有兩個交點A(﹣m,0),B(1,0),交y軸于點C(0,﹣3am+6a),以下說法:m=3;當(dāng)APB=120°時,a=;當(dāng)APB=120°時,拋物線上存在點M(M與P不重合),使得ABM是頂角為120°的等腰三角形;拋物線上存在點N,當(dāng)ABN為直角三角形時,有a.正確的是( .

A.①② B.③④ C.①②③ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+4的圖象與x軸相交于點A,與反比例函數(shù)y= x>0的圖象相交于點B1,6).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)設(shè)點Px軸上一點,若SAPB=18,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABAC,AB=2,AC=4.對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)°180°,分別交直線BC、AD于點EF

1)當(dāng)=_____°時,四邊形ABEF是平行四邊形;

2)在旋轉(zhuǎn)的過程中,從A、BC、D、E、F中任意4個點為頂點構(gòu)造四邊形,

①當(dāng)=_______°時,構(gòu)造的四邊形是菱形;

②若構(gòu)造的四邊形是矩形,求該矩形的兩邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村計劃建造如圖所示的矩形蔬菜溫室,要求長寬的比為31,在溫室內(nèi),沿前后兩側(cè)的內(nèi)墻各留2.5m寬的空地放置工具,其他兩側(cè)內(nèi)墻各留1m寬的通道中間區(qū)域再留1m寬的通道通道與前后墻平行,剩余空地(陰影部分)為種植區(qū)當(dāng)種植區(qū)面積是300m2,求矩形溫室的長與寬是多少?

查看答案和解析>>

同步練習(xí)冊答案