【題目】如圖,已知 CDAB,EFAB,垂足分別為D,F,∠B+BDG180° 試說明∠BEF=∠CDG.將下面的解答過程補充完整,并填空(填寫理由依據(jù)或數(shù)學式, 將答案按序號填在答題卷的對應(yīng)位置內(nèi))

證明:∵CDAB,EFAB

∴∠BFE=∠BDC90°

EFCD

∴∠BEF

又∵∠B+BDG180°

BCDG

∴∠CDG

∴∠CDG=∠BEF

【答案】見解析

【解析】

根據(jù)同位角相等,兩直線平行得到EFCD進而得到∠BEF=∠BCD,再根據(jù)同旁內(nèi)角互補,兩直線平行,得到BCDG,進而得到∠CDG=∠BCD,即可證明.

證明:∵CDABEFAB(已知

∴∠BFE=∠BDC90°(垂直定義

EFCD(同位角相等,兩直線平行

∴∠BEF ∠BCD (兩直線平行,同位角相等

又∵∠B+BDG180°(已知

BCDG(同旁內(nèi)角互補,兩直線平行

∴∠CDG ∠BCD (兩直線平行,內(nèi)錯角相等

∴∠CDG=∠BEF(等量代換

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店決定購進A、B兩種紀念品.若購進A種紀念品8件,B種紀念品3件,需要95元;若購進A種紀念品5件,B種紀念品6件,需要80元.

1)求購進A、B兩種紀念品每件各需多少元?

2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于750元,但不超過764元,那么該商店共有幾種進貨方案?

3)已知商家出售一件A種紀念品可獲利a元,出售一件B種紀念品可獲利(5a)元,試問在(2)的條件下,商家采用哪種方案可獲利最多?(商家出售的紀念品均不低于成本價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣15 +2cos30°+(π﹣3.14)0+|﹣ |.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列算式:

1個式子:

2個式子:

3個式子:

4個式子:

1)可猜想第7個等式為

2)探索規(guī)律,若字母表示自然數(shù),請寫出第個等式

3)試證明你寫出的等式的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若有理數(shù) ab 滿足,則a____, b____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線 AB與直線 CD交于點 O,過點 O OEAB

①如圖 1,OP 為∠AOD 內(nèi)的一條射線,若∠1=∠2,求證:OPCD;

②如圖 2,若∠BOC2AOC,求∠COE 的度數(shù);

③如圖 3.在(2)的條件下,過點 O OFCD,經(jīng)過點 O 畫直線 MN,若射線 OM平分∠BOD,請直接寫出圖中與 2EOF 度數(shù)相等的角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線,直線與直線、分別相交于點、

(1)如圖1,若,求,的度數(shù);

(2)若點是平面內(nèi)的一個動點,連接,探索、、之間的數(shù)量關(guān)系;

①當點在圖2的位置時,請寫出、之間的數(shù)量關(guān)系并證明;

②當點在圖3的位置時,請寫出、之間的數(shù)量關(guān)系并證明;

③當點在圖4的位置時,請直接寫出、、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數(shù)根;
④拋物線與x軸的另一個交點是(﹣1,0);
⑤當1<x<4時,有y2<y1 ,
其中正確的是( )

A.①②③
B.①③④
C.①③⑤
D.②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案