【題目】如圖,長方形ABCD中,AB=4cm,BC=8cm.點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿C→B→A→D→C的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了3cm,并沿B→C→D→A的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持速度不變,繼續(xù)沿原路徑勻速運(yùn)動(dòng),3s后兩點(diǎn)在長方形ABCD某一邊上的E點(diǎn)處第二次相遇后停止運(yùn)動(dòng).設(shè)點(diǎn)P原來的速度為xcm/s.
(1)點(diǎn)Q的速度為 cm/s(用含x的代數(shù)式表示);
。2)求點(diǎn)P原來的速度.
(3)判斷E點(diǎn)的位置并求線段DE的長.
【答案】(1)2x;(2)點(diǎn)P原來的速度為cm/s.(3)此時(shí)點(diǎn)E在AD邊上,且DE=2.
【解析】試題分析:(1)設(shè)點(diǎn)Q的速度為ycm/s,根據(jù)題意得方程即可得到結(jié)論;
第二次相遇時(shí),點(diǎn)的路程和為長方形的周長.
直接根據(jù)中點(diǎn)的速度進(jìn)行求解即可.
試題解析:
(1)設(shè)點(diǎn)Q的速度為ycm/s,
由題意得4÷x=8÷y,
故答案為:
(2)根據(jù)題意得:
解得x= .
答:點(diǎn)P原來的速度為cm/s.
(3)點(diǎn)從第一次相遇到第二次相遇走過的路程為:
此時(shí)點(diǎn)E在AD邊上,且DE=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時(shí)發(fā)現(xiàn)忘帶手機(jī),此時(shí)離上班時(shí)間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機(jī)、啟動(dòng)電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時(shí)上班,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段CD是由線段AB平移得到的,點(diǎn)A(﹣1,4)的對應(yīng)點(diǎn)為C(4,7),則點(diǎn)D(1,2)的對應(yīng)點(diǎn)B的坐標(biāo)為( 。
A.(2,9)B.(5,3)C.(﹣4,﹣1)D.(﹣9,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+4x﹣3=0時(shí),原方程可變形為( )
A.(x+2)2=1B.(x+2)2=19C.(x+2)2=13D.(x+2)2=7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈爾濱市10月份平均氣溫為4℃,11月份平均氣溫為﹣10℃,則11月份的平均氣溫比10月份的平均氣溫低( )℃.
A.﹣14B.14C.﹣6D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長分別為6和8,那么點(diǎn)P到矩形的兩條對角線AC和BD的距離之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若點(diǎn)P為直線AB的一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO使以O(shè)A為底的等腰三角形?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以P、B、O、M為頂點(diǎn)組成的平行四邊形為菱形?若存在,求出點(diǎn)M坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是公理的是( )
A. 等角的補(bǔ)角相等 B. 內(nèi)錯(cuò)角相等,兩直線平行
C. 兩點(diǎn)之間線段最短 D. 三角形的內(nèi)角和等于180
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com