【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整. 原題:如圖1,在△ABC中,點(diǎn)D、E、Q分別在AB、AC、BC上,且DE∥BC,AQ交DE于點(diǎn)P,求證:

(1)嘗試探究:在圖1中,由DP∥BQ得△ADP△ABQ(填“≌”或“∽”),則 = , 同理可得 = ,從而
(2)類比延伸:如圖2,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交DE于M、N兩點(diǎn),若AB=AC=1,則MN的長(zhǎng)為
(3)拓展遷移:如圖3,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交于DE于M、N兩點(diǎn),AB<AC,求證:MN2=DMEN.

【答案】
(1)S;
(2)
(3)解:證明:如圖3,∵∠B+∠C=90°∠CEF+∠C=90°,

∴∠B=∠CEF,

又∵∠BGD=∠EFC,

∴△BGD∽△EFC,

,

∴DGEF=CFBG,

又∵DG=GF=EF,

∴GF2=CFBG,

由(1)得 = =

× = × ,

∴( 2= ×

∵GF2=CFBG,

∴MN2=DMEN.


【解析】(1)解:如圖1,∵DP∥BQ, ∴△ADP∽△ABQ,
=
同理可得△ACQ∽△APE,
=
=
所以答案是:∽,

2)解:如圖2所示,作AQ⊥BC于點(diǎn)Q.
∵BC邊上的高AQ= ,
∵DE=DG=GF=EF=BG=CF,
∴DE:BC=1:3,
又∵DE∥BC,
∴AD:AB=1:3,
∴AD= ,DE= ,
∵DE邊上的高為 ,MN:GF=
∴MN: = ,
∴MN=
所以答案是:

【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在1~7月份,某地的蔬菜批發(fā)市場(chǎng)指導(dǎo)菜農(nóng)生產(chǎn)和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價(jià)與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤(rùn)最大的月份可能是(
A.1月份
B.2月份
C.5月份
D.7月份

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有三張背面完全相同的紙牌A,B,C,其中正面分別畫有三種不同的幾何圖形,小華將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張,請(qǐng)你用畫樹狀圖或列表的方法,求摸出的兩張紙牌面上所畫幾何圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)P從PB處開(kāi)始按順時(shí)針?lè)较蛐D(zhuǎn),PM交邊AB(或AD)于點(diǎn)E,PN交邊AD(或CD)于點(diǎn)F,當(dāng)PN旋轉(zhuǎn)至PC處時(shí),∠MPN的旋轉(zhuǎn)隨即停止.
(1)特殊情形:如圖②,發(fā)現(xiàn)當(dāng)PM過(guò)點(diǎn)A時(shí),PN也恰巧過(guò)點(diǎn)D,此時(shí),△ABP△PCD(填“≌”或“~”);
(2)類比探究:如圖③,在旋轉(zhuǎn)過(guò)程中, 的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點(diǎn)O為圓心所作的半圓分別與AC、BC相切于點(diǎn)D,E,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論: ①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當(dāng)x>2時(shí),y隨x的增大而減小.
其中正確的結(jié)論有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,⊙O的半徑為4,則這個(gè)正六邊形的邊心距OM和 的長(zhǎng)分別為(
A.2,
B. ,π
C.2 ,
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為( ,1),下列結(jié)論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結(jié)論的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案